

Laszlo Naszodi

CREATING FAST

WEB APPLICATIONS

Selected lectures for
not-so-dummies

Copyright © Laszlo Naszodi

Edition 5.13

Published by

First edition 2005

Fifth edition 2007

 2

Table of Contents

About the Author 3
Preface 9

Part 1. Speed
Web Design from Scratch 15
Does Size Matter? 26
Let's Make the World Round Again 33
The Initial Initiative 47
Info On the Fly 51
Dynamic Menu Under 10k 57
Navigation On the Inner Track 64

Part 2. Usability
Usability, Abusability 71
Got Lost on the Web? 78
A Five-Minute XHTML Class 84
The Ultimate XHTML template 89
Pay for the Fly in the Soup 97
One Code Fits All 101
How to Play Sound 107

Part 3. AJAX In Action
Making The Fastest Photo Album 117
Fixing The Broken Bookmark 123
Slide Show With Asynchronous Calls 127
Preloading Images 131
Of Web Marketing and Other Cyber Terrorism 136

Part 4. Appendices
The Web Developer's Ten Commandments 141
Useful Links 142
References 143
Acronyms and Abbreviations 144

 3

I cannot associate corporate culture with cultural values
more than the culture of fungi that makes the milk sour.

About the Author

and His Views

In most of my life I have worked for
small companies or for even smaller,
for myself. With a complex
occupation of being a systems
designer/ developer/ programmer/

QA analyst/ database analyst/ technical writer at the same
time, I have operated in a simple and flexible way. I knew
my financial limitations and that of my customers, mostly
small business owners. Instead of having my customers buy
Macromedia's DreamWeaver, Coldfusion Studio or
Microsoft's Visual Studio for one thousand dollars each, I
developed reusable, open-source codes that functioned the
same way as those few necessary features of the heavy-
duty commercial software.
Same with databases. Unless the job or the customer
required a really big database, I haven't utilized an
expensive SQL Server or Oracle. In most cases I could go
far without any database or with an inexpensive MS Access
solution. Everything seemed simple. When I needed a
permission or access to certain resources, I just told my
coworker at the next desk to set up the necessary rights for
me. He was the systems administrator, the database
manager, the network administrator and the web master,
without having these titles. He was Joe, the master of his
domain. I might have had to mention to him that my
problem was that I could read but could not write in a
certain folder or in a certain database table. That was it. He

 4

knew what I needed and how to meet these needs with a
minimal compromise. He lifted the restriction that
obstructed me and I could continue my work in a minute.
The first time I worked in a corporate environment, I was
shocked to see how difficult the same process could be.
The one-minute task to gain write access to a folder or a
table took a month; a busy month for many people. I heard
the clatter of fire brigades running up and down. I had to
fill out lengthy forms, have my supervisors authorize them,
and answer questions that I had nothing to do with. The
request went through an unclear labyrinth of bureaucrats
and semi-educated "specialists". The process was covered
by a unit called Help Desk. I could not look behind the
desk to figure out who is "helping", i.e., holding me back.
The systems administrator did not know anything about
databases, the database manager did not deal with system
issues and the security administrator had his own
pigeonhole, too. Everybody was content with the hard and
expeditious work but me. They saw a complex process, I
saw inefficiency. Instead of removing the roadblock, they
kept tossing the ball back to me. I had to be rude to make
myself clear: “A small part of my job is to create new
records, but I am restricted to write in my database. I have
to do dozens of other tasks to finish my job. You do
whatever you must do to solve this well-defined access
problem. I don't know and I don't care whose responsibility
it is inside the IT department. Just don't return my request
to me.” Needless to say that I was out soon. I did not fit in
the corporate culture where people were too busy showing
how important they were.
The second time when I was employed by a large
corporation, I was hired as a technical writer. By that time
the PR lingo changed the word corporation to the better
sounding organization. Still, disorganization ruled.
Departments had conflicting interests and they fought each

 5

other, even at the cost of damaging common interests. Our
section needed a Web application. We asked the IT
department if they could develop it. We got a half-year, six-
person, half-a-million dollar offer, which was unacceptable.
I mentioned that I could complete the project alone in two
months for my regular salary. The IT people who were
supposed to cooperate with me in the project did not
forgive me for taking their opportunity of easy money
making. They set up rules and restrictions for me to fail. I
was supposed to follow their unreasonable standards, using
their ugly, bloated software tools, their hulking
development environment and their over-priced database
server. When I agreed to do so, they fell short to provide
me with those documents and resources.
While I was waiting for the resources, I created a prototype
that did not use anything but a Web browser. My
development environment was a text editor, slightly
smarter than Notepad. It colored my program with the
intelligence level of the Homeland Security alerts. I could
only use text-based elements: HTML, CSS, JavaScript and
XML. I did not get access to a database or a programming
language to write server-side scripts. I could not even have
an Internet service, like IIS, Apache or Personal Web
Server. After two months I had a working application that
did not need server-side scripting or a database. As a matter
of fact, it did not need a server at all. It was fully functional
and those who had access to a shared folder on the Intranet
and had a Web browser on their workstations could run the
application. It was fast and smart and low maintenance.
Fast, because it did not make a roundtrip to the server at
every user intervention as if I developed the app with their
standard methodology. Smart, because it could find and
display all the information from XML files as if a relational
database was running behind the scene. Low maintenance,
because it was independent from service providers who
needed maintenance. And fast, smart and low maintenance,

 6

because its size was a fragment of the similarly smart
applications' size that were developed with the usual large
enterprise technology.
The malfunction of the big organization made me follow a
technology that I have done before as a small business
owner and someone who contracted with less resourceful
small businesses. The prototype went into production
before I got the green light from IT to start the
development. I am thankful to this large company for
making me prove that the cost-conscious craftsman's
approach can be efficient in a wide enterprise environment,
in a relatively large project, too.
Corporations are not and cannot be as customer centric as
small businesses. The main goal of all big companies is to
please their shareholders with the highest available profit.
They cannot act primarily for their clients. It's more
profitable to spend on marketing, delude and make us
believe that their products and services are good, than to
spend on quality improvement. I'm not anti-market, I'm
pro-consumer. I would like to see free competition
prevailing by raising quality and lowering prices, beneficial
to the people. Trends of merges point to the other direction,
to restrictive practices of monopolies. We only get the bad
part of competitive market. We have to put up with the
raising prices, with the marketers via phone, TV, papers,
magazines, radio, Internet, bill boards, drinking cups and
anything and everything that has a surface, is packaged, is
moving or not. In general, while running around the
market-driven world, we shouldn't forget why all the
Canossa-going, compromise, perpetual back noise of
advertisements, and lies-with-smiles are for. Big businesses
are for the largest possible market share and not for us,
people. They like us if it's profitable and they kill us if it's
more profitable.

 7

Big software companies go to China and agree to help the
oppressive government to pin down human rights activists.
Not that these companies were against human rights but
because this is how they can make big business before
better, more conscientious companies. You may think that I
am opinionated. Is the executive director of Human Rights
Watch opinionated, when he says: “…If it implements its
pledge, Yahoo will become an agent of Chinese law
enforcement.” Is the European Commission also
opinionated in its March 2007 statement? It says: "...
Microsoft has established unreasonable prices for its
protocol licensing of its server technology in Europe." The
Commission characterizes Microsoft's proprietary server
software protocols, which is protected by patent, copyright
and trade secret law, as containing virtually no innovation.
I do not hate big corporations. I may dislike them. Not only
because I must wear a suit there and shave every morning
although I usually spend eight hours with a computer
staring at each other in a cubicle without meeting a person.
How would a policy maker feel if he would be forced by
his own rules to the extremes, to wear jacket and tie in the
bathtub where nobody sees him?
I cannot associate corporate culture with cultural values
more than the culture of fungi that makes the milk product
sour. Nothing is wrong with fungi. After all, we like
fungus-produced cheese and wine. Should we like spoiled
milk products, too? Corporate-supported process of
innovation is like fermentation. The final product can
become either delicious or simply stinky. Corporations help
innovations if and only if the proper personnel thought that
the particular innovation was profitable, regardless if it
makes sense. Half of the innovative efforts aims at making
products proprietary, i.e., to hide information even at the
cost of making the product clumsier. Corporations are not
necessarily the champions of progress. It is not true that

 8

what is good for Ford is good for America. A man may be
respected for his inventive ideas but he should be ashamed
of others. Henry Ford might have been a genius but he was
also an ignorant, arrogant, and insensitive man. But let's not
go in there. I am talking about a technology that enables us
to create high quality expert systems without using costly
tools during and after development. Does it work for large
enterprise projects? In certain cases it does not. However, it
works in many projects, where most developers and
organization leaders think that a pricier toolset and
approach are necessary.
I would like to show here that completing great projects
doesn’t necessarily need expensive tools. I am not saying
that we should always fight a big beast with a stone.
However, we should not use heavy artillery when a
slingshot would do it. Go David, go!

 9

The Web developer is a device that turns coffee
 into Web pages

Preface

To Whom and About What I Am Talking
Before I started to create Web applications, I read some
books and articles on the topic. Some good, some bad and
some really ugly. There are countless publications for
beginners detailing how to color the page or make a
sentence bold. A systematic study of the basics is useful but
one should not spend too much time on learning those few
HTML tags. What I needed was the tricks and tips of the
trade, which make a Web site fast, usable, maintainable and
aesthetic. I am offering the reader a fast track. Once you
have a basic knowledge of HTML, CSS and JavaScript,
you can jump on my wagon. Following the examples of
Creating Fast Web Applications you will become an
advanced Web developer much faster than if you keep
reading those beginner's books.

The alphabet soup
Have you heard about RAD, as Rapid Application
Development? Yes? Good. How about DRA, as
Development of Rapid Applications? Yes? I doubt it. I just
made up this term. Creating fast applications is out of scope
of the IT industry’s mainstream. If you use a developmental
environment and the resulted application runs slowly, they
say that it’s not their fault; you should buy a faster, more
powerful computer. They can convince you to buy their

 10

software, which will quickly do the developing job for you.
If you fail to produce the application as quickly as the
smiling guy from the demo, you won't complain. But if
they promise that the resulting app will be fast and in fact,
it will not be, you may have the right to ask your money
back. That's why there is no such thing as DRA for sale.

The title and the content
What a lame book title! my son said. At least, why don't
you change the adjective to slick? My son's remark made
me think. Creating fast Web applications is very important
but speed is not the only characteristic of a computer
program. These lectures are focusing on speed but they
concern about aesthetics, maintainability and usability of
browser based applications as well. In short, slick covers
the topics better than fast, but it sounds too populist to me
and it connotates with superficial, not just with fast,
smooth, compact, nice and smart. As so many times, my
son was right but after considering all aspects I neglected
his advice. I did not want to imply that my collection was
one of those "How to Become a Pro with No Brain" books.
That's why the second part of the book has been included.
It deals with the second most important aspect of slickness
after speed; with usability. The third part is about both:
How to make an application fast and usable with some
ideas of AJAX.
A title must be captivating, as short as possible, still
distinctive, descriptive and precise. My first choice was one
of my articles' titles: Info On the Fly. It is catchy and short
but does not give a clue about the topic. A title like that can
hide anything from a book on gossiping to airplane flying
instructions. I knew exactly what I wanted to write about
but I could hardly select the first word. Should it be
building or creating? I relate the word building to the
persistent diligence and effort of the construction worker
and the word creating to the vision and inventiveness of the

 11

engineer. The job of Web design and development requires
both brain and buttocks. What is more important? I chose
the word creating because I thought that developing
applications require more brain than endurance. Actually,
several What-You-See-Is-What-You-Get Web site building
software take the most part of burden. If one has
imagination, one can build nice looking static Web pages in
no time, with no sweat. The trouble starts when one visits
these sites. First, one does not get what you have seen.
Second, these pages open much slower than those created
without using the page editor's WYSIWYG feature. And
new problems rise when you want to create some
dynamism on the pages. When I say dynamism, I don't
mean dancing signs and flashing pictures. A dynamic page
has to do something useful; to calculate, to select, to give
context-sensitive choices. The WYSIWYG mode is not
efficient for creating dynamic sites and applications.
I struggled with the last word of the title, too. Should it be
site or application? People associate the Web with Web
sites and they are almost completely right. However, a Web
application is not necessarily a site on a network. Web
application is a term for programs that use a browser as
their graphical user interface. It should have been called
something like browser-based application. It includes but is
not limited to Web sites. A Web site can be a set of static
pages full of pictures of a pet. It is just a Web site, not a
real Web application even if it shakes and barks. We can
expect from an application to be dynamic. Well-written
Web apps run in any modern browsers, in almost any
computers with almost any monitors. As opposed to most
software applications, they are platform independent
because their codes are in text format, readable by any
operating systems. They don't have to reside on a network.
A so-called Web application does not necessarily need a
Web server, either. I can't change an industry-wide
established terminology and I will interchangeably use the

 12

terms Web application and Web site as others. However, I
always mean a set of interconnected pages which opens in a
browser. Nothing more and nothing less.
Let me explain the subtitle, especially the reference to the
target audience I described as not-so-dummies. In the last
decade the average computer literacy shifted from
beginners' toward intermediate level. A generation grew up
on the "For Dummies" series. Amateurs learned how to
handle various computers, software tools and build Web
sites by moving the mouse around. Most people took
advantage of the convenient approach. They grabbed one of
the Web site building software with the corresponding "For
Dummies" book, turned on the WYSIWYG mode, and
formed their pages without knowing, what is going on
behind the scene. They can create nice pages with limited
functionality now. I want to reach those who already
learned the basics and feel the urge to move further, leaving
the children's play of pointing-and-clicking behind.
Web pages written in a What-You-See-Is-What-You-Get
development environment may become dysfunctional or
even unusable sometimes. Most of all, they are always
slower compared to the ones edited in source code view. A
crucial review of the automatically created source codes is
necessary to speed up these pages. It's not a developer but a
senseless software that writes the code. A program, which
does not care about superfluous repetitions or file size.
Names and id's, like x139 and Table07, automatically given
by the software, don't mean anything and there is no person
to ask how and why a code segment was created. The
generated code becomes more and more difficult to decode
as it grows. You can start a project in WYSIWYG mode,
show off with the fast progress but you cannot finish it. At
a critical point you must stop pointing and clicking and
must write and rewrite substantial portions from scratch.

 13

The last 5% of the project will need more time then the first
95%. Why can't we hand code from the beginning then?

An example
Let's say you have a restaurant at a ski resort and you want
to display an accurate menu and wine list next to the
entrance. Every time you change the special of the day, run
out of an item or a new wine delivery arrives, you need to
update the list. Would you retype the new list, go out to the
freezing street and replace the sheet of paper three times a
day while the snow blows in the open window of the menu
box? Or get an old, stand-alone computer for a $100 that
has a browser, place its monitor in the menu window, and
as soon as you reedited a simple text file inside the
building, the new menu is shown in a fancy format outside.
The program can automatically update the price list
according to the part of the day, before breakfast, lunch and
dinner time. This is a simple Web application, but the
periodical updating function would be hard to write with a
WYSIWYG tool. Using the samples of this book, you can
hand-code a dynamic price list application in Notepad and
run it in a browser, without having a Web site or a network.
Do you want to put the price list on your Web site? You
can do it, too, without extra reformatting efforts. The online
and offline versions will be the same.

Inspiration, perspiration
Writing the first application from scratch is time
consuming. During my programming career I had to switch
systems and languages several times. At these times my
mentor used to say: "Never write your first program in a
new system. Start with the second." He meant that we
should pick a source code, any working code in the
particular language, and rewrite it. This book presents
enough sample code to rewrite.

 14

Working with source code is a great intellectual challenge,
and it always delivers mental satisfaction to me. The
challenges make me excited and sometimes sweat. These
selected lectures are for Computer Science/IT teachers and
students, for professional and amateur developers who want
to develop themselves, too, for small business owners who
can't afford to buy expensive development environments
and office suites. For those who already see the limitations
of the code generating tools but don't have the time to cope
with picky languages and disagreeing browsers. I hope that
the ideas make the readers as excited as myself and the
given solutions help to spare their sweat. However, if you
do have time and urge to sweat, you can find practice
questions and problems at the end of each lecture.

 15

 PART 1. SPEED

Trust me. It won't take long and it won't hurt.

 Web Design from Scratch

Intro
No, I don't want to launch an N+1st Web design course for
dummies. I don't want to make the false impression that
Web development is an easy job. Yes, if one could format a
document in Microsoft Word, one could create an HTML
version with a click on the "Save As Web page" option. The
result can be a nice page with a messy source code, full of
repetitions and inconsistencies. In general, point-and-click
environments generate ill-formed code with syntactical
errors in many times. And last but not least, automatically
generated pages open significantly slower than similar
pages created in HTML view with hand coding.

Why not from scratch then?
Theoreticians of information technology say that if you
need to build maintainable complex applications fast, you
must use an Integrated Development Environment. When
they say Web site builder IDE, they mean a code-
generating software. While the developer points-and-clicks,
drags-and-drops in a graphical user interface, the software
writes the HTML code. IDEs may be useful for beginners,
amateur developers, and for designers, who want to show
off with fast partial results. These tools meet the
expectations of having a short learning curve for simple
projects similar to their samples and for people with
minimal programming background. Unfortunately no IDE
can completely exclude the manual writing of some

 16

elements from the development process. At the end of this
lecture I give an elementary formatting task that one cannot
solve with a site builder IDE by pointing-and-clicking. One
must write the code manually. Problems come up at the
high end, too. An IDE's half-solution becomes non-
maintainable because during the short learning period the
"developer" did not learn what happens behind the scene.
Sooner or later a real expert has to look at the code anyway
and has to rewrite other's code, namely, the code generated
by a senseless software while a trained monkey pressed the
mouse buttons in the right sequence. Names and id's don't
mean anything in that code and there is no person to ask
how and why a segment was created. Decoding,
understanding and maintaining the generated code become
more and more difficult as the code grows.
Average projects that require about a quarter-year effort of
a qualified developer can usually be completed without an
IDE at least as fast as with an IDE. If you understand what
you are doing, then the handcrafted application will be at
least as maintainable as if it was built with an IDE. Of
course, one can build terrible solutions manually, as well.
Writing code from scratch is not easy but rewarding. One
should focus on creating elements that are generally
applicable, not just for that particular case. WYSIWYG
editors don't know what other pages and similar elements
are in your mind. They are programmed to create that
specific page or page element only. In code view, on the
other hand, you can create general reusable elements that
build Web applications, rather than just solve the actual
problem. Your tools are not proprietary, as opposed to that
of the IDE's. You can modify them easily and reuse them
freely. The superiority of this approach in education is also
without doubt, provided that the goal of education is to
produce thinking individuals, not trained monkeys.
Nevertheless, the products created from scratch will run

 17

much faster than the ones created in the WYSIWYG view
of an IDE.
Once you built a few small sites and applications of your
own elements, you would hang on to your toolset,
independently from others' heavy-duty machinery. You
may switch to an IDE later but it does not work in the
opposite direction. If you never tried the craftsmen's
method, you cannot fix the problems that come from the
automation. And they will come, no matter what the IDE
maker says. That is why I want to start with writing the
very basic structure of an HTML document manually. Trust
me. It won't take long and it won't hurt.

The basic template
As scientific disciplines must proceed through their
evolution, including some dead-end experiments, the
history of Web design and development has its own natural
path as well. I whish that in our territory theory of
evolution was not applicable, and the smartest, not the
strongest survive. Most point-and-click Web design
software builds the layout of a page by creating cells of
rows of tables. What happens if a page element needs
internal rearrangement? The software creates cells of rows
of tables inside the cell that contains the element. The page
will be populated with complicated formatting objects that
should be separated from the content.
Even though I have not used point-and-click or drag-and-
drop interfaces of development environments for serious
projects, I too fell for the easy way of designing layouts.
My standard template of a Web page always had a table
and it looked something like this:

 18

<html>
 <head>
 <title> Title comes here</title>
 </head>
 <body>
 <form>
 <table>
 <tr>
 <td> Content element 1 comes here
 </td>
 <td> Content element 2 comes here
 </td>
 </tr>
 <tr>
 <td> Content element 3 comes here
 </td>
 <td> Content element 4 comes here
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Code 1. An old HTML template using a table for arranging the
content.

I placed a form in the top level of the body, just to be
capable to use form elements, like input boxes, form
attributes and methods throughout the page. Then I put a
table in the form to manage the layout. Lately I read
publications that convinced me not to format pages with
tables. Two of the best were published at about the same
time, in May 2003. One is Designing with Web Standards
by Jeffrey Zeldman. The other one is Dan Shafer's HTML
Utopia: Designing Without Tables Using CSS. If you are
as cheapo as I am and want to check out free chapters first,
you can find the respective links at the end of this book.
And if you are as reasonable as I am, sooner or later you
will be convinced and buy at least one of them. They
explain well that tables are for displaying rows and
columns of related data, not for arranging objects on a page
in general. I agree that there are other tags, like span and

 19

div that select sections of a page and are more suitable for
formatting page sections. If we use tables as means for
arranging unrelated elements, we violate one of the Web
Developer's Ten Commandments, which says: "Thou shalt
not mix content with presentation." One who understands
why the font and center tags have been deprecated can
understand that I misused the table tag here.
Browsers render tables much slower than other elements.
Most HTML elements are interpreted and displayed
sequentially, from top to bottom of the source code.
However, browsers cannot display the first row of a table
correctly until they read the last row. So, they go through
the tables twice, which doubles the time of presentation.
Another reason I had to get rid of the table that surrounded
the content was that I frequently created sequences of
similar page elements. HTML does not facilitate looping,
and I had to write td and tr tags in the page with scripts.
These tags were missing from the view of HTML
validators. I wasted time on searching non-existent errors in
syntactically correct and well-running pages because
validators skipped the tags written by scripts. I could have
replaced the commandment about separation of form and
content with one that says: "If it ain't broke, don't fix it!"
but I did not. I am not that kind of reformer...
I caught another children's illness of Web development. I
structured my pages in a frameset. Framesets have an
incontestable advantage. You can put constant page
elements in frames and update only one or a couple of
frames that change content while navigating through the
site. If your Web site displays many constant elements,
such as menus, header and footer, a side section with table
of content, you may save significant download time with
placing those elements in steady frames. On the other hand,
frames have their problems, too. A frameset’s URL that
you see in the address bar does not necessarily correspond

 20

with the content of the page you see. The displayed address
is usually the address of the opening state of the frameset. It
does not change when the content of a frame changes. I
have not completely given up using framesets. I found a
solution to overcome the above problem of unmatching
addresses and contents. The article Got Lost On the Web?
helps you decide to keep or abandon your frames.
To format a page, we should use Cascading Style Sheets at
the first place. In the next template I included some simple
styling. I also replaced the form tag with div because I
don't use form elements in this page:

<html>
 <head>
 <title> Title comes here
 </title>
 <style>
 body {text-align:center; background:#eee}
 .content {background:white; width=680px; text-
align:left}
 </style>
 </head>
 <body>
 <div class="content">
 Content elements come here

 in an arrangement you like.
 </div>
 </body>
</html>

Code 2.a An HTML template using a division for arranging the
content.

Even a simple page like this looks substantially differently
in different browsers. IE 6 centers the content, FF does not.
One way to make it look the same is that we declare its
document type. Once we put a standard XHTML doctype
in the first line, we also take some obligations. We need to
add a namespace to the html tag, a type attribute to the style
tag, and we need to close unclosed
 tags as
:

 21

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title> Title comes here
 </title>
 <style type="text/css">
 body {text-align:center; background:#eee}
 .content {
 background:white; width=680px; text-
align:left}
 </style>
 </head>
 <body>
 <div class="content">
 Content elements come here

 in an arrangement you like.
 </div>
 </body>
</html>

Code 2.b An XHTML template using a division for arranging the
content.

Many Web sites condense their pages on the left side of the
window. In a high-resolution screen they look as if they are
close to tip over and sink to the left. However, it is not easy
to evenly distribute content because the user's screen's
width can range from 640 to 1600 pixels and windows can
be resized. That's why I prefer centering the content. The
text-align property of the body does not mean here
what it says. It aligns the enclosed object, not just the text,
to center. Unfortunately and fortunately it only works in
Internet Explorer. Unfortunately, because the unsolved
problem inspired me to find a general solution, and
fortunately because I could come up with a cross-browser
solution that does what it says. I don't have to be aware that
the solution becomes obsolete when Microsoft corrects its
semantic error in the next version of Internet Explorer.
(Note: I was right in the first edition of this book. Since
then IE 7 came out and the solution works as expected.)

 22

I like to display the content in an area of fixed width and
text left-aligned. That is why I set the form's width to 680
pixels, wide enough but not exceeding the width of the still
used 800 by 600-pixel monitors. I reset the text-align
property of the div that surrounds the content to the left.
To really separate content and presentation, we need to
create a style sheet file and link it to the page. This single
style sheet file can later be linked to all pages that we want
look similarly. Also, in an optimal setup the once loaded
file is cashed in memory and the browser doesn't have to
download it again and again when it opens other pages that
use the same CSS file. Here are the separated HTML
template and the CSS file.

<html>
 <head>
 <title> Title comes here
 </title>
 <link href="scripts/basic.css" type="text/css"
rel="stylesheet">
 </head>
 <body>
 <div class="content">
 Content elements come here
 </div>
 </body>
</html>

Code 3. An HTML template containing link to the style sheet file.

 /* basic.css*/
body { text-align:center; background:#eee}
.content {background:white; width:680px;
text-align:left}

Code 4. The basic.css style sheet file.

Code 3 is a modification of the quirky Code 2.a, which
displays differently in IE 6. Returning to the problem of
centering the content, a cross-browser solution exists,
which works in both quirks mode and standard mode. The

 23

critical part of the style is highlighted in the following
code. The idea is to move the left edge of the content to the
center and then back with half of its width. As opposed to
many other browser-dependant solutions, this one does not
run a script to query the width of the window. Everything is
set relative to the actual window size and everything is
absolutely simple. The CSS file contains my additional
formatting preferences, too. This file, about 1k size, can be
the overhead of a whole site. Take its items as a shopping
list, not as a book of law. It takes care of the most
important tags and classes. You may change their
properties according to your taste.

/* basic.css*/
body {margin:0; padding:0; border:0;
 background:#eee; font-size:12pt;
 font-family:Arial,Geneva,Sans-Serif}
.content { width:680px; position:relative;
 left:50%; margin-left:-340px;
 margin:0 auto; text-align:left;
 padding:0 25px; border:0; background-color:white;
 background-repeat: no-repeat;}
h1 {text-align:center; font-size:22pt}
h2 {text-align:left; font-size:17pt; margin:0;
 line-height:100%}
.float {float:left; text-align:center;
 width:65px; padding:8px 5px}
.code {font-family:Monaco,
 "Curier New",monospace; font-size:11pt}
.code1 {font-family:Monaco,
 "Curier New",monospace}
.hilite{background:yellow}
a{text-decoration: none;margin:0; padding:0;
 border:0}
a:link{color:blue; font-weight:bold}
a:active{color:red}
a:visited{color:#909; /*lila */}
a:hover{color:black;background:silver}

Code 5. The final version of basic.css.

 24

?

The rest is needlework. Just make a dozen copies of the
HTML template, give them titles, fill them up with contents
and you developed a platform independent, resolution-
independent, cross-browser Web site. More detailed,
XHTML compliant templates are shown in a subsequent
article, in The Ultimate XHTML Template.

Summary
Starting and completing Web design projects from scratch is
simple. As opposed to working in a WYSIWYG environment,
your code remains maintainable and loads much faster than the
one created with a point-and-click, drag-and-drop editor.

Practice questions and problems

1. Have you been using WYSIWYG Web design

software? Then here is a simple task for you. Paste the
content of the first twenty lines of the
http://www.scriptwell.net/fastweb/scratch.html page in
your Web development tool. No, not the source code,
only the unformatted text. Reformat the text with the
point-and-click way to look like the beginning of my
page. When you are happy with the result, check the
following:

• Resize the two comparable windows to full size, to
medium and to smaller than the text width. Do they
still look alike? If not, go back to the design desk
until they do in all three window sizes.

• Open my page and your page with two other
browsers. If they look the same, let me know what
development environment are you using and I take
my hat off. If they look different, try to modify the
page in WYSIWYG mode until they look the same
in all the three browsers as mine. After you are

 25

done, reconsider the label "fast" of your
development tool.

• How large is the formatting overhead of your file?
Does your tool duplicate this overhead or a
significant part of this overhead in a similar page
that you create with your tool? Don't you think that
it is too much overhead for that short, one thousand
character text?

• Validate your page with an HTML validator, for
example, with the W3C Markup Validation Service.
If it is proved to be an XHTML strict document, I
give my highest respect to the makers of your
development software. If it is a valid HTML 4.0
Transitional document, I still bow. If it is not valid,
rethink using that Mickey Mouse toy as a
development tool.

2. What are the basic advantages of creating Web pages
from scratch as opposed to using WYSIWYG
development software?

3. Let's say that you prefer the arrangement of pages
where the content starts on the left, with a margin of 25
pixels. Would you change the HTML file of the above
page? If not, what would you change?

4. Write a template that centers the content of the page
vertically, too, regardless of the window size. For
simplicity, the height of content of the page is expected
less than 400 pixels but unknown. Isn't it a simple and
basic design? Can you complete the development with
your WYSIWYG tool? (I don't think so!) The solution
should work in three browsers, for example in IE6,
NS7/Mozilla/FF, and Opera7.

 26

The following may seem irrational, unreasonable
 but educational.

Waste more – make more.

 Does Size Matter?

A 10-minute cure
to make it shorter

(or longer)

Intro
Call me superstitious but 10k in file size is a magic number to me.
As most of us, I can read and correct small codes fast and easily.
To me the trouble starts around 10k. It's OK to put 20k textual
content in a page but a 10k file full of HTML tags, CSS styles and
JavaScript can become unreadable. Beside perspicuity, a file
under 10k can load in about a second, even via regular dial-up
connection. I usually shave off 30-60% of my first working
version's size. Whenever I realize that my file is too big to trace, I
start to scrupulously compact, and rewrite repeating blocks into
functions.

What's Wrong with Obfuscators?
I usually don't compromise readability, usability or
maintainability for smaller size. I don't delete comments
that make sense and I don't write several statements in one
line to spare some new-line characters. Unlike some
obfuscators, I would not rename a variable from sAnswer
to x to save some bytes. An obfuscator program makes me
keep two versions: One for reading and editing and one for
uploading and running. Can you trust an obfuscator that it

 27

delivers exactly the same page as the original version? If
you have a development site locally, a test site and a live
production site, which ones would contain the obfuscated
version? The live site is supposed to be a replica of the last
successfully tested state of the test site. What would you
check when the obfuscated version fails and reports an
error in line 132? If a linked file has an original and a
condensed version, which version would you invoke in the
original and in the condensed version of the main file?
Obfuscators don’t like that I don’t put “;” in front of “}”.
Would you change your coding habits to satisfy the
obfuscator's special needs? I am not an obfuscator fan. A
nitpicker? Maybe.
I am picky about repeating lines. It is trivial that one should
replace repetitive blocks of alike JavaScript codes with
calls of one function. Less obvious is that repetitive chunks
of HTML can be replaced with the call of a JavaScript
function that contains document.write commands. Means
of dynamic HTML can be used in static HTML pages, too.
Let it be a large part of HTML text showing twice or a
small part showing more than two times in a file, I
functionalize it but obfuscators don't.
I found a file, OPEN.HTML of 11k size, filled with
JavaScript, well structured, well organized and probably
well tested, because it is part of a Microsoft presentation.
On the Windows 2000 Professional CD, you can find it in a
folder called DISCOVER. It is readable, relatively concise
and does not really need my personal touch. I learned a lot
from it about how to animate a page with simple JavaScript
instead of using ten times larger flash files or other
prepackaged animation technologies.

What's Wrong with the Market Economy?
I too prefer simple but significantly shorter solution to any
machine-gun-against-the-sparrow solutions that have the

 28

false advantage: A beginner who has an expensive
development environment can deliver impressive effects
without knowing much about computers. But this is a
bigger issue in our society. In general, a trained monkey
with resources is more appreciated by decision makers than
talent, knowledge and hard work. You cannot get a fat
government contract just because you can write fantastic
applications in a short time on a low budget. "Social
engineering" beats engineering. Hire a lobbyist or a
salesman for a 95% share, who can convince the big buyers
that they have to spend 20 millions on the solution, and you
justified your modest, 5%, one million dollar income.
Waste more make more.
The private sector is not better either. Today's market
economy is not about competition for excellence. The race
for the better, more economical turned to the race of
squeezing out the competitors with non-technical means,
like with patenting an obvious feature, a key-stroke, to
prevent the competition from using it. Differences in values
or efficiency of the product have secondary importance.
Efficient manipulation with false ads of a half-baked
proprietary product wins over quality work. Smart
marketers and lawyers make a product profitable at first
place, not technical experts who know the trade in and out.
I don't categorically deny the value added by non-technical
persons. In many cases issues like usability should be
discussed with experts in human sciences rather than
relying merely on the opinion of the application's
developer. However, if the solution runs slow because of its
size, in our culture the big buyers incline toward purchasing
a faster and bigger computer system rather than asking for a
solution that is aware of resources. Worst of the worse,
some employers measure developers by the line they add.
You must work against efficiency if you want to get paid.

 29

But my topic is not rationality today. I am about to make a
nice little code even smaller just because my fingers are
itching from a file size exceeding 10k. It is irrational,
unreasonable but educational. Take it as I took, a short
exercise that can lead to a larger saving in size and
bandwidth in another case.

A mini case study
I decided to spend 10 minutes on shaving 10% off the
already concise OPEN.HTML file without ruining its
readability. I tried first what obfuscators do at first place. I
cleaned extra spaces by replacing ' = ' with '=', ' + ' with '+',
etc. After five minutes of mindless processing with
automated Find and Replace the file size decreased about
500 bytes. It helped me with reading chunks of codes better
but others may see the result less readable. Then I took out
extra tabs. For example, all function blocks were indented
with two tabs instead of one. Again, minor change in size.
Then I went for little brainier actions. I deleted useless
commented lines, like //alert (...) left there in the
testing phase. An obfuscator program would not know,
which comment was trash, which was valuable.
So far the code has not been changed in a sense that its
interpretation by a browser has been unaffected. The
following alterations may change the parser's work but the
outcome still must be the same.
If I see references to an object more than two times in a
block, I usually rewrite the script using the with statement.
In case of repeated long expression in addition or
concatenation, I prefer the '+=' operator. For example,
document.all.Marketing.filters.alpha.opacity =
document.all.Marketing.filters.alpha.opacity+EndV;
document.all…

is not only longer but less readable than

 30

with(document.all){
 Marketing.filters.alpha.opacity+=EndV;
 ...
}

Applying the above two principles at only two places
reduced the size to 10k. Now we are talking about size
reduction.
Next I just selected all HTML sections and hit Shift/Tab
about five times. This action eliminated all the indentations
and dropped the size to 9.7k. You may say that I definitely
ruined readability. However, this was not an irreversible
change. I use Visual Studio's editor that has a sometimes-
annoying feature: when I switch between design view and
source view, it reformats the source, regardless if I want it
or not. (Actually, this is the only reason that I switch to
design view.) Other advanced web page editors also have
the auto-formatting feature. We can get back our
indentations in no time. The file size went below 10k
before my preset 10 minutes was up. I stopped tinkering the
file, although I had some more ideas to make it shorter and
more readable. Here are two ones concerning the if
statement.

Conditions, my way
When I check the true/false value of a condition I never
write down statements like if(Found==true).
To me the shorter form if(Found) is more readable.
Nevertheless, leaving out the comparison operation may
make the code confusing in other situations. JavaScript is
supposed to return false, if the object in the condition does
not exist or is null. Browsers disagree on the interpretation
of these cases but developers deliberately use the
comparison-less shorthand
if (object) and if (!object)
regardless of testing the condition for true value or for not
null value. I met highly knowledgeable developers who, of

 31

course, are aware of the difference between 0 and null. Yet,
they use the above shorthand in both cases, because it
happens to work in IE. Usability and maintainability are at
stake when the script is being converted to a language
where false is equivalent to the integer type value 0 and
true is the same as not false, i.e. not 0. I also met
interpreters that defined false as 0 and true as -1. Is +1 true
or false in this system? Not distinguishing between false
and null may work in one environment but strikes back in
another. So, please compare with null if you mean that.
Because of a special feature of Netscape 6, you may also
need to compare with the value undefined. To keep
readability in these cases, I use the wide-spread, cross-
browser function to testing for null:
function isNull(obj) {
 return(obj==null)||(obj==undefined)
}

The comparison-less shorthand becomes
if(isNull(object))

and not the also correct but longer and less readable
if(isNull(object)==true)

Several techniques are available that compress the code
more dramatically but they may work against readability.
One is called the terse C syntax of the conditional
statement. Instead of
if(name=="Eggenbegger") {
 x=4;
}
else {
 x=2;
}

you may write:
x=(name=="Eggenbegger")? 4: 2;

The latter is shorter but is it more readable? You decide. I
am not that fanatic believer in the beauty of petite. But,

 32

without extreme compression actions, I pushed the file size
under 10k. Mission accomplished, as the President used to
say when a minor, partial and marginal task had been
finished. If you are paid by the line and want to show off
with a really large size of code, open your HTML
document in Word, and save it as an HTML. You get result
faster then ten minutes in terms of fattening your code.

And a joke
I think I made my point about the Web developer's
situation in the market environment. Still, I can't resist
telling a related story. The mushroom expert comes across
the old woman who collects mushrooms in the wilderness.
He takes a peek in her basket and anxiously says. "Lady,
these mushrooms are not edible." "Don't worry, young
man", she says, "I would never eat them. They’re for sale."

Summary
You can make it shorter or longer, depending on the demand.
File size matters but extreme size reductions ruin readability. I
show a few tricks that make the size of an HTML / Javascript
file smaller, while improve readability. I also draw attention to a
common mistake in shortening conditional statements.

Questions
1. Where do you stand? Are you an anxious

mushroom expert or one producing software for
sale, not for consumption?

2. Do you think that the software market is full of half-
done products?

3. Have you ever felt that your development is not
done yet but financial or organizational pressure
made you publish it prematurely? What did you say
and what did you think then?

?

 33

Now I found that the World is round...

Bee Gees

Let's Make the World Round Again

Intro
In the dark Middle Ages people had to get
convinced that the Earth is round. In our Computer
Age everything starts to become square again. The
screen, the windows, the data sheets and tables all
are of rectangular shape. One cannot create a
rounded border for a table with pure HTML. You
need at least a few images to make the frame of an
object round. Fireworks and other Web design tools
provide us with help to create non-rectangular
frames. Using point-and-click software is as simple
as peeling bananas but the created code will most
likely be huge and clumsy. Let's avoid monkey
business and go for the pure solution.
This article helps to create those rounded corners
from scratch with HTML, CSS and Javascript,
without Web designer software. I will present a very
small addition to the page and a reusable
Javascript code that will do the job. In the
meantime I want to show you how and why style
sheets and scripts should be introduced in your
Web design practice.

 34

If you are aware of speed and bandwidth issues, you want
to avoid using large images. The following solution
includes four replicas of a simple picture of a quarter-circle.
Their size is about 200 bytes each. You can create one with
any drawing program, e.g., with MS Paint.

Figure 1. The four corners, bottomleft.png, bottomright.png...

If you read this in electronic format, you can save the
pictures by right-clicking on them, or you can draw a new
bottom left image and three reflections will create the
corresponding bottomright.png, topright.png, and
topleft.png images. I am also using a picture for vertical
and horizontal lines. It is called graydot.png, which is
nothing but a 1 x 1 pixel gray dot.
The idea is to place the frame elements in the outer cells of
a table. The first and last rows contain the top and bottom
parts of the borders, including the curvy corners. The first
and last columns of the middle row hold the sidelines of the
border and its inner three columns contain the object, in our
case some text that we want to surround with the border. I
considered that using five columns instead of three was
important because this way the sidelines of the border
would occupy only one-pixel wide cells and the surrounded
object could align closer to the sidelines.
Here comes the first, table-based version of a page with a
text framed by a rounded corner border:

Now that you read the table of content and some light
passages of the book, you can buy the “hard stuff”, as a
drug dealer would say. I’d say the same in a polite manner:
If you like what you have read, please buy the complete
book. You will not regret it. Thank you.

 35

<html>
 <head>
 <title>Rounded Corners ver. 1.</title>
 </head>
 <body>

 <table align="center" cellspacing="0" border="0">
 <tr><!--Row 0 presets the widths of columns-->
 <td width="1"></td>
 <td width="14"></td>
 <td></td>
 <td width="14"></td>
 <td width="1"></td>
 </tr>
 <tr valign="top"><!--Top with upper corners-->
 <td colspan="2"><img src="images/topleft.png"
 width="15" height="15" alt="/"></td>
 <td><img src="images/graydot.png" width="570"
 height="1" alt="."></td>
 <td colspan="2"><img src="images/topright.png"
 width="15" height="15" alt="\"></td>
 </tr>
 <tr><!--Middle of the frame with the sidelines-->
 <td background="images/graydot.png" width="1">
 </td>
 <td colspan="3"><!--The object placed inside
 the border-->Content comes here...</td>
 <td background="images/graydot.png"
 width="1"></td>
 </tr>
 <tr valign="bottom"><!--Bottom & lower corners-->
 <td colspan="2"><img src="images/bottomleft.png"
 width="15" height="15" alt="\"></td>
 <td><img src="images/graydot.png" width="570"
 height="1" alt=".">
 </td>
 <td colspan="2"><img src="images/bottomright.png"
 width="15" height="15" alt="/"></td>
 </tr>
 </table>
 </body>
</html>

Version 1. Rounded borders created with pure HTML and with 5
minimum size images.

 36

Remarks
1. There is a 0th dummy row in the table before the first

row that does not display anything but sets the widths
of the cells. They could be set in the first row if there
were only single-column cells without colspan.

2. The vertical sidelines come in fact from the default
feature of repetition of the single dot as a background
image. We cannot repeat the dot horizontally the same
way because the cell's height is greater than 1 pixel and
the repetition of the dot would fill the whole height of
the cell. The length of the vertical borderlines
automatically grows as the height of the row grows
with the size of the center cell.

3. The length of the horizontal borderlines, presently 570,
should be set at least as large as the width of the framed
object. Otherwise the border will be discontinuous.

There is a big drawback of the above solution. Whenever
the size of the framed object changes, the size of the
horizontal borderlines should be changed at multiple
places. A better solution should offer a single location
where the width of the border can be set. Also, the HTML
code contains the size of the corner images at several
places. What if someone wants to use other corner images
of different pixel size? The next version contains a simple
CSS code that sets the size of the horizontal line at one
place.
Let's replace the tag

at both places with

where horizline is defined as a CSS class:
.horizline {width:570px; height:1px;
 background-image:url(images/graydot.png);
 background-repeat:repeat-x;}.

 37

Now we can set the width of the horizontal line at one
place. Similarly, the class

.vertline {width:1px; background-image:
url(images/graydot.png); background-repeat:repeat-y}

would eliminate the width setting in the tags

<td background="images/graydot.png" width="1">

at two places by rewriting the above tags in the form of

<td class="vertline">.

Unfortunately, we must handle the sidelines differently as
the horizontal lines: Their length (height) is difficult to tell
in advance. Although the described class works well with
IE, Netscape disregards the

background-repeat:repeat-y

property without the explicit specification of the object's
height, so, we will draw the vertical lines the old way.
However, to converge the width=15 height=15 settings in
one place, we can define a corner class as

.corner {width:15px; height:15px}

and replace the tags like

with
.

The new version looks like this:

 38

<html>
 <head>
 <title>Rounded Corners ver. 2.</title>
 <style type="text/css">
 .horizline {width:570px; height:1px;
 background-image:url(images/graydot.png);
 background-repeat:repeat-x;}
 .corner {width:15px; height:15px;}
 </style>
 </head>
 <body>

 <table align="center" cellspacing="0" border="0">
 <td width="1"></td>
 <td width="14"></td>
 <td></td>
 <td width="14"></td>
 <td width="1"></td>
 </tr>
 <tr valign="top">
 <td colspan="2"><img src="images/topleft.png"
 class="corner">
 </td>
 <td></td>
 <td colspan="2"><img src="images/topright.png"
 class="corner">
 </td>
 </tr>
 <tr><!--Middle of the frame -->
 <td background="images/graydot.png"
 width="1"></td>
 <td colspan="3">Object inside round border</td>
 <td background="images/graydot.png"
 width="1"></td>
 </tr>
 <tr valign="bottom">
 <td colspan="2"><img src="images/bottomleft.png"
 class="corner">
 </td>
 <td></td>
 <td colspan="2"><img
 src="images/bottomright.png" class="corner">
 </td>
 </tr>
 </table>
 </body>
 </html>

Version 2. Rounded borders created with HTML and CSS.

 39

Remarks
Although the repetition of background images is default, setting
the repetition in the style is a good idea. Don’t forget that
browser defaults can be set in several levels.
In the previous version the horizontal lines were in the
foreground and the vertical lines in the background. (The $100
question: Why was this setting necessary there?) With the class
definitions both lines are in the background.
Now almost all the size parameters are moved from the disperse
parts of the body to the style segment of the head, except from
the notorious row 0. Let's move those parameters to the head,
too, by developing a little Javascript that will write the HTML
code of row 0. The first 20-some lines of the code are as follows.
 <html>
 <head>
 <title>Rounded Corners ver. 3.</title>
 <style type="text/css">
 .horizline {width:570px; height:1px;
 background-image:url(images/graydot.png);
 background-repeat:repeat-x;}
 .corner {width:15px; height:15px;}
 </style>
 <script>
 var curveWidth = 15;
 function dispRow0() {
 var temp = curveWidth-1;
 document.write('<tr><td width="1"></td>');
 document.write('<td
 width="'+temp.toString()+'"></td>');
 document.write('<td></td>');
 document.write('<td
 width="'+temp.toString()+'"></td>');
 document.write('<td width="1"></td></tr>');
 } //end function dispRow0()
 </script>
</head>
<body>

<table align="center" cellspacing="0" border="0">
 <script>dispRow0();</script>
 <tr valign="top">

 … The rest of the code did not change …

Version 3. Rounded borders created with HTML, CSS and

Javascript.
Since version 1 the source code grew about 6 lines but it
became simpler. Wouldn't it be nice to surround an object

 40

of a Web page with a round border just by adding a few
lines to the Javascript? Then we can create as many framed
objects in the Web site as many we wish, without extra
overhead.
Once we started to write Javascript, we became close to an
elegant version. Why don't we consolidate the rest of the
border drawing into the Javascript and put the script in a
separate file? Let's "can" the border drawing in a Javascript
file that the Web designer does not even have to read and
understand. This way one can add round borders by adding
only a few lines to the original HTML source code.
Here is the "canned" version of our project:
<html>
 <head>
 <title>Rounded Corners ver. 4.</title>
 <style type="text/css">
 .horizline {width:570px; height:1px;
 background-image: url(images/graydot.png);
 background-repeat:repeat-x;}
 .corner {width:15px; height:15px;}
 </style>
 <script>
 var curveWidth = 15;
 </script>
 <script src="scripts/roundborder.js"></script>
</head>
<body>

 <script>dispRow0();dispTopAndLeft();</script>
Here comes the object placed inside the round border
 <script>dispRightAndBottom();</script>
 </body>
</html>

Version 4. Rounded borders created with HTML, CSS and
Javascript.

The setting of size parameters is concentrated in the style
and script sections of the head. The body contains only two
extra lines. The above solution works with the five picture
files in the images subfolder and the following
roundborder.js script in the scripts subfolder:

 41

function dispRow0() {
 var temp = curveWidth-1;
 document.write('<table align="center"
 cellspacing="0" border="0">');
 document.write('<tr><td width="1"></td>');
 document.write('<td
width="'+temp.toString()+'"></td>');
 document.write('<td></td>');
 document.write('<td
width="'+temp.toString()+'"></td>');
 document.write('<td width="1"></td></tr>');
} //end function dispRow0()
function dispTopAndLeft() {
 document.write('<tr valign="top">');
 document.write(' <td colspan="2"><img
src="images/topleft.png" class="corner"></td>');
 document.write(' <td><img
class="horizline"></td>');
 document.write(' <td colspan="2"><img
src="images/topright.png" class="corner"></td>');
 document.write('</tr>');
 document.write('<tr>');
 document.write('<td
background="images/graydot.png"
width="1"></td>');
 document.write(' <td colspan="3"
align="left">');
} //end function dispTop()
function dispRightAndBottom() {
 document.write('</td>');
 document.write('<td
background="images/graydot.png"
width="1"></td>');
 document.write('</tr>');
 document.write('<tr valign="bottom">');
 document.write('<td colspan="2"><img
src="images/bottomleft.png"
class="corner"></td>');
 document.write('<td><img
class="horizline"></td>');
 document.write('<td colspan="2"><img
src="images/bottomright.png"
class="corner"></td>');
 document.write('</tr></table>');
} //end function dispRightAndBottom()

Addition to Version 4. The script roundborder.js contains a

size variable as a single parameter that can be set outside the code.

 42

Are we done yet? Well, almost. The setting of the size
parameters is still scattered: the curve size shows at three
places and the length of the horizontal line at a fourth place.
Why don't we move them to one place by letting a
Javascript function create the style section, too? Here is the
latest version. The creation of the latest and greatest is
waiting for you. See the homework at the end of the article.
<html>
 <head>
 <title>Rounded Corners ver. 5.</title>
 <script src="scripts/roundborder.js"
type="text/Javascript">
 </script>
 <script>
 var curveWidth = 15;
 var horizWidth = 700;
 scriptRoundStyle();
 </script>
 </head>
 <body>

 <script>dispRow0();dispTopAndLeft();</script>
 Object to place inside the round border
 <script>dispRightAndBottom();</script>
 </body>
</html>

Version 5. The addition of the highlighted lines make an object
bordered with a rounded frame.

To make the above solution work, we need to add the
scriptRoundStyle() function to our Javascript:

function scriptRoundStyle() {
 document.write('<style type="text/css">');
 document.write('.horizline {width:' +
horizWidth.toString() + 'px; height: 1px;');
document.write(' background-image:
url(images/graydot.png);
 background-repeat:repeat-x;}');
document.write(' .corner
{width:'+curveWidth.toString()+'px;
height:'+curveWidth.toString()+'px;}');
 document.write('</style>');
} //end function scriptRoundStyle()

 This function should be added to the script roundborder.js.

 43

The ultimate solution

We learned some techniques to make a page more compact
and more maintainable. Now that we know the steps and
reached a solution that works in HTML quirks mode, let's
throw it out, and restart the development of a standards-
compliant, XHTML, tableless solution by using the prior
experience.

 44

<html>
<head>
 <title>Tableless Rounded Corners ver. 1A.</title>
 <link href="scripts/roundborder.css"
rel="stylesheet" />
</head>

<body>
 <div class="roundBox">
 <div class="roundedge">
<!--Top of the frame with the upper corners-->
 <img src="images/topleft.png"
 style="vertical-align:text-top"
 alt="/" /><img class="horizline"
 src="images/graydot.png"
 style="vertical-align:text-top;" alt="." />
 </div>
 <div style="border-left:solid 1px #ccc; border-
right:solid 1px #ccc;">
 Content comes here...
 </div>
 <div class="roundedge"
 style="background:url(images/bottomright.png)
no-repeat top right">
 <img src="images/bottomleft.png"
 style="vertical-align:top" alt="/" /><img
class="horizline"
 src="images/graydot.png"
 style="vertical-align:bottom" alt="." />

 Content comes here...
 </div>
 <div class="roundedge"
 style="background:url(images/bottomright.png)
no-repeat top right">
 <img src="images/bottomleft.png"
 style="vertical-align:top" alt="/" /><img
class="horizline"
 src="images/graydot.png"
 style="vertical-align:bottom" alt="." />
 </div>
 </div><!--end roundBox-->
</body>
</html>

The Ultimate Version.

 45

The highlighted lines should be added before and after the
content that you want to surround with a rounded frame. It
is important that the consecutive image tags be written
back-to-back. If we write them in separate lines an extra
space will show between the round frame elements.
Where are the top-right and bottom-left corners? You may
ask. Those and the horizontal lines are defined in the linked
roundborder.css:
.roundBox { width:730px; font-size:14px;
 background: url(images/topright.png) no-
repeat top right
}
.roundBox div, img {padding:0; margin:0;
border:0;}
.roundedge {width:100%; height:15px; line-
height:100%;/* for Strict*/}
.topleft {vertical-align:top}
.horizline {width:700px; height:1px}

The linked roundborder.css.

Where to go now? We may consolidate the dozen lines that
display the frame into two JavaScript functions, topFrame()
and bottomFrame(), similarly to dispTopAndLeft() and
dispRightAndBottom() in version 5. I leave this job to you.
You can perfect the project in several other ways, like
making the line width of the border adjustable, or, making
the whole frame a clickable button. I am looking forward to
see your ideas.

Summary
Screen objects, like windows, frames, and buttons are
usually of rectangular shape. Do they poke your eyes? It's
not too difficult to round the objects' corners.

 46

In five steps from pure HTML via CSS and Javascript to a style-
writing script, I’ll show you the creation process of a reusable
code that frames an object with rounded borders.

Problems
1. The ultimate solution can use one Javascript

function call before and one after the object that we
want to frame. Write those two functions and
replace the two highlighted code blocks with the
two function calls.

2. If you can't be sure that your users enable
Javascript, you may write one line before and one
after the object that include the necessary html
lines. Replace the two highlighted code blocks with
two single lines that include the proper HTML in
the page on the server side. Create the two files to
include. What else is necessary to make the server-
side include work? For hints google the words html
file include.

?

 47

We want those nice letters, too,
 but we don't have the time.

 The Initial Initiative

Intro
Sure, we like those decorative initial letters, and no, we don't want
to spend hours to individually paint them. Once you found your
favorite font, size, color and arrangement, why can't you just
throw a new fancy letter, say, a shady G in your page by calling a
function, say shady(G)? Again, most graphical design software is
capable to create fancy pictures of those letters but we want a
simple, fast and bandwidth-saving solution. Forget the pictures
and their thousands of pixels to transfer. Let's go for the pure
solution "canned" in CSS and Javascript as we did previously.

 he technology is out there, you just have to pick it
up. Setting the initial letter of a paragraph is carried out by
putting the initial letter in a span of class d3, named after 3-
dimensional. The span should include two other spans that
hold the front and background letters. The HTML code of
this paragraph should start like this:

T
The technology is
out there...

A letter is a letter stored in one byte and its shadow is the
same letter, shifted and grayed a little. The two spans have
to be in one line, otherwise a white space gets between

 48

them. The front and back classes are defined in a style sheet
as
.d3 {float:left; font:bold 34px Georgia;
 position:relative; line-height:107%}
.front{position:relative; top:-10px; left:2px;
 color:black; z-index:2}
.back {position:absolute; top: -8px; left:0px;
 color: gray; z-index:1}

The above definitions set the colors of the front and shadow
letters black and gray, and the relative shifts of the shadow
down by 2 pixels, and left by 2 pixels. (Remember,
measures start from the top left corner. That's why top and
left mean down and right.) Naturally, we should play with
the shifting parameters after we set the font type and size.
You need to find a balanced set that works for the
narrowest letter I and the widest letter M. Once you found
your favorite arrangement, stay with it and don't change it
inside a site or application.
The solution already works but it is not as elegant as I
promised in the intro. The HTML code of a better version
should be as simple as
<script>shady('T')</script>he technology is out
there…

The rest should be hidden in the JavaScript code:
<script type="text/javascript">
 function shady(letter) {
 document.write('<span
class="front">'+letter+'');
 document.write('<span
class="back">'+letter+'');
 }
</script>

To make the scripted version work the same way as the
original version, one should copy the function exactly. A
minor reformatting, addition of white spaces like a new line
or a tab would ruin the composition.

 49

Playing with the three classes in the style definitions gives
you an opportunity to live up your artistic talent and to
design initial letters the way you want. The setting of the
background, size, and multiple letter layers yield endless
possibilities.
Now that we arrived to a simple solution, I give you an
even simpler one. The W3C has a recommendation for a
CSS pseudo-element called first-letter. For example, if you
want to use a special style for the first letter of a paragraph,
or of all paragraphs, you can start the paragraph with
<p:first-letter> and close it with </p:first-letter>.
The style definition of the tag should look something like
p:first-letter {text-weight:bold; text-shadow: silver
2px 2px 0}.

You can look for the description of the text-shadow
property's parameter on the W3C site www.w3.org. The
main reason that I don't go into details is that no major
browser implemented this element yet. But watch out, my
nice solution for the fancy initial letter may become
obsolete soon. Until then, use it if you like it and improve it
if you don't.

Summary
Graphically composed texts are nice but they show up much
slower than literal texts. A non-graphical technology is
suggested for creating attractive letters with dropped shadow.
This solution saves design time as well as download time of a
page. With half a kilobyte of code you can cover all alphabets,
let them be Latin, Greek or Cyrillic.

Practice questions and Problems
1. You may want to display longer than one character

texts with dropping shadow. Would the shady
function work without change if one gives a longer
than one character literal constant as parameter to it?
If yes, why; if not, why not?

?

 50

2. You may want to make the decorative letter drop the
shadow to its right. You increase the font-size in class
d3 and realize that the font suppresses the next letter.
Would an extra space after the last fix the
problem? If not, then what would?

3. In the above solution the principle of separation of
content, structure and style prevails. The content (the
letter) emerges in the HTML document. Its style and
the structure are described separately in a CSS and in
a JavaScript function. In some cases, passage between
the separated elements is necessary. Wouldn't it be
nice to set the font size and the offset of the shadow
in the HTML file when calling the JavaScript
function? Can you rewrite the function that its call
shady('G', 300, 5) would generate a letter G of 300%
size, with a shadow of a 5-pixel offset? The solution
must work the same way as the original one when the
additional two parameters are omitted in the function
call.

 51

Do you think the colonel goes to chase the chicken
after you order the spicy thighs at KFC?

No! At the time of order the bird is already there.

With skins and bones, but dead and breaded.

 Info On The Fly

Intro
I have always been impressed when a system serves the
information immediately as I need it. Satisfactory speed in the fast
food industry is more common than in the information industry.
Maybe because no speed is fast enough in the latter. Some
technologies drill down in the pile of data while the inquirer
composes the request. Others use brute force and serve
everything in advance before one may specify one's needs. To
serve the info fast, it has to be prepared and close to the user at
the time of request. Like the breaded bird in KFC's kitchen.

A traditional way of finding a specific item is to show a
containing “box” where the specific item might be stored
and show the selection of items in that box. In a book one
can check out the titles of chapters then the section titles
inside the chosen chapter. On the Web, we click one of the
visible tabs, buttons, menu items or links and hope that the
click will lead us to the place we want to go. It would be
nice to look behind the link before clicking, to see what we
can expect.
Before I get to the point, let me talk about some historical
moments of the browsers' evolution. Unlike today, early
browsers did not behave similarly at all. Since both
Netscape and Internet Explorer had their attractive features,
writing cross-browser codes was a necessity. And a
nightmare. Significant parts of the used Javascript codes
dealt with finding out what the type, operating system and
version of the client's browser were. For years mostly three

 52

major species must have been recognized and supported:
Netscape version 4, Internet Explorer 5 and 6, and
Netscape version 6. To me, dealing with the first one
required the most effort. As Netscape skipped version
number 5, it already has its version 7. Although Netscape
4.0 has been the pioneer of dynamic HTML and layer
setting, people should stop driving that ancient vehicle. It is
not only outdated but also full of bugs. To support it is as
obsolete as to support a pulse tone telephone. Not having a
ten-dollar touch-tone phone is ridiculous. (Imitating that
you don't have one may be efficient because sometimes this
is the only way to get a live representative on the other end
of the line.) Not having a newer browser for free is
unforgivable.
Let's return to the original topic. We need an HTML object,
the content of which can be changed fast, according to the
user's request. We also need an event that can handle the
object's content dynamically. The object I chose is the
inline frame, iframe in short. The event we will utilize is
the onmouseover event. The latter is what it says. It
happens when the mouse gets over an image or over a
linked object. With its help, before the user clicks on a link,
we can show what to expect after the click. The info will be
displayed in an inline frame immediately as the mouse gets
over the link.
You could see an example on the Table of Contents page
www.scriptwell.net/fastweb/TOC.html :

 53

Over there, the summary of a particular article showed in a
frame in the moment the mouse got over the article's title.
No search in a database, no download time. The iframe
container made the prompt response possible. During the
download of the page, another HTML file that contained all
the summaries loaded into the frame. The onmouseover
event does not have to initiate any data transfer, just the
vertical positioning of the summaries inside the frame.
How many summaries can we retrieve promptly this way?
As many fit in an HTML document. The practical limit is
the list of articles on the parent page, the summaries of
which should be displayed. In an Intranet, a reasonable
page size can be up to 50k. The recent year's summaries of
a publishing company, or the company's phone directory
can fit in this size for sure. All in all, this technique is
excellent for providing a small-to-middle size quick
reference.

 54

Let's see how the page is set up. It has a table with one row
and two cells. The right cell contains the iframe, the left
cell contains the list of titles of the articles. For simplicity, I
took out the codes that draw the round frame around the
summaries and simplified the articles' file names:
<table align="center" cellspacing="0" border="0">
 <tr><td width="330px">
 <a onmouseover ="moveTextTo(1)"
href="article1.html">
 Let's Make the World Round Again
<img class="arrow" alt="<" id="arrow1"
src="images/ARROW.gif">

 <a onmouseover ="moveTextTo(2)"
href="article2.html">
 Dynamic Menu Under 10k
<img class="arrow" alt="<" id="arrow2"
src="images/ARROW.gif">

 Got Lost on the Web?
<img class="arrow" alt="<" id="arrow3"
src="images/ARROW.gif">

 The Initial Initiative
<img class="arrow" alt="<" id="arrow4"
src="images/ARROW.gif">

 Info On the Fly

<img class="arrow" alt="<" id="arrow5"
src="images/ARROW.gif">
 </td>
 <td>
 Summary:
 <iframe style="left:6px; position:relative"
marginwidth="0" frameborder="0" scrolling="no"
id="sum" name='sum' src="summaries.html"
width="300px" height="140px">
 </iframe>
 </td>
</tr></table>

Code 1. The HTML code of the table that displays the list of
articles and the summaries.

 55

The above code refers to the arrow class, defined in a style
section as
.arrow{width:52px;height:20px; vertical-align:bottom;
border:0; visibility:hidden;}

The moveTextTo function is responsible for moving the
arrow image, and scrolling the text of summaries inside the
frame to the appropriate entry:

function moveTextTo(block){
 with (document) {
 for (var i=1;i<6;i++){//switch all images to
invisible
getElementById('arrow'+i).style.visibility='hidden';
 }
getElementById('sum').src='summaries.htm#bl' + block;
getElementById('arrow'+block).style.visibility=
'visible';
 }
}

Code 2. The Javascript function turns all images invisible,
scrolls the text of summaries in the frame to the appropriate

anchor and switches the selected arrow back to visible.

Thanks to the getElementByID function that works in
Internet Explorer 4.0 and above, in Netscape 6.2 and above
and in Opera 4.0 and above, the solution covers 99% of
present Internet users. Unfortunately Netscape 4 does not
understand iframe, although it knows a similar container,
ilayer. With ilayer, a similar effect could have been
created as with iframe. However, Netscape 4 has other
deviances. For example, it does not support the height
style element, it does not render the border element well
and more importantly, it has a terrible behavior at manual
resize of the browser's window. In a nutshell, these are the
reasons why one should give up on Netscape version 4. I
could write pages being compatible with NS 4. I just don't
want to. Are you still a Netscape version 4 rider? Go

 56

download version 6 or 7! (And buy a touch-tone phone for
ten bucks!)

Summary
A technique is shown for displaying info promptly at the time
the mouse hovers over a Web object. If the object represents a
link the user can decide from the info if he/she really wants to
click on the object. The necessary code is smaller and faster than
that of other pop-up solutions.

Practice questions and problems
1. You are assigned to build an online phone book of a

company. What would you do differently if the number
of employees is one thousand or if it is ten thousands?

2. What are the basic differences between the sketched
technology and a database application that uses form
input?

3. Did you notice the repetitions in code 1? Good.
Time to put the table's creation in a Javascript loop. If
you read the previous articles, you don't need more
help. OB Send me the solution as a non-reusable
assignment of an array of titles and a reusable function,
the size of which is not larger than 300 characters.

4. The solution uses table cells for arranging the page
elements. Rewrite the page using div tags instead of
table cells.

?

 57

Talk is cheap. So is storage space.
Then why bother? I tell you why.

(‘Cause talk is cheap.)

Dynamic Menu Under 10k

Intro
Talk is cheap. So is storage space. You can easily find a provider
who is willing to host your Web site for free, if your site is smaller
than 50 Megabytes. How much is 50 Megs? For comparison, the
total text that an average person reads during a lifetime would
easily fit in 50 Megabytes. Dealing with pictures is a different
story. One good quality photo may take as much storage space
as the full text content of a book.

Still, one can build a nice and graphically rich site within
the free size limits. The problem starts when you happen to
be lucky and people start to visit your site. After a certain
amount of traffic the provider will ask you to pay for the
bandwidth and the free site is not free anymore. Keeping
the site small keeps the necessary bandwidth small and
you from becoming a paying customer. OK, you may
say. On the other hand, if you don't show storage-extensive
graphics, your site stays free of charge because it is so
unattractive that nobody wants to see it. Right? Wrong.
Your visitor's first impression greatly depends on the
loading time of your opening page.
Many pages on the Web take much more storage than they
should. Let's take a simple menu bar of four selection
buttons created graphically. A button may have three

 58

versions: one for normal, one for pressed state and a third
for the state when the mouse is over the button. A simple
graphical button may have the size of 2k at least. So, the
four buttons with three versions easily occupy 24k. With a
regular modem connection, loading 24k takes about 5
seconds. 5 seconds of your visitor's time and of your
bandwidth.
There is a good old programming principle that is forgotten
by many Web designers: Repetition should be managed
with a loop rather than repeating a chunk of code. The
blame is not necessarily on the developer. Pure HTML is
not capable to manage loops. But Javascript is. Displaying
a bar of four dynamic buttons should not require four times
as many graphics and four times as big code. Showing
three different versions of a button may add one small
image of the altering part only. In the following I show
you a solution for the above menu bar problem. It will
display graphical buttons with the above three states. The
number of selection buttons can be arbitrary and the
required amount of transfer stays below 10k, regardless of
the number of buttons. Adding a new button would add a
few bytes, but not kilobytes to the transferable file.
Let's create an opening page with two frames. The top
frame will contain the menu bar and the selected page will
appear in the bottom frame.

<html>
 <head>
 <title>Home frame</title>
 </head>
 <frameset rows="90,*" border="0" framespacing="0"
frameborder="no">
 <frame src="top_frame.html" name="menu"
scrolling="NO" noresize>
 <frame src="page0.html" name="content" noresize>
 </frameset>
</html>

Code 1. index.html

 59

When you modify top_frame.html, set the highlighted
size of the first frame the way that the bottom of the frame
coincide with the bottom of the tabs. For the present height
of top_frame.html, the above value works well in
Internet Explorer 6, Netscape 6 and Opera 7. Here is the
code of the top frame:

<html>
 <head>
 <title>Top Frame for Choices</title>
 <link href="menuDrawerStyle.css"
type="text/css"
 rel="stylesheet">
 <script language="Javascript"
src="scripts/menuDrawer.js">
 </script>
 <base target="content">
 </head>
 <body>
 <h1>Home Page</h1>
 <table cellSpacing="0" cellPadding="0"
border="0">
 <tr>
 <script language="Javascript">DrawMenu();
 </script>
 </tr>
 </table>
 </body>
</html>

Code 2. top_frame.html

top_frame.html is as simple as index.html. Its head
contains a link to a style sheet and a link to a Javascript file.
Its body contains a table with cells holding the images of
the menu tabs. They are created via calling the Javascript
function DrawMenu(). The fun starts with the Javascript:

 60

/*menuDrawer.js ver.1.0. Creates tabs in a menu frame to
switch content in a center frame. L. Naszodi 2004.01.14. */

var tabSelected = 1;

tabText = new Array();

//Your set of menu items come here:

tabText[0] = 'Applications';

tabText[1] = 'Publications';

tabText[2] = 'Favorite Links';

tabText[3] = 'About Me';

function changeSelected(tab) {

 if (tab!=tabSelected) {

 //Change previously selected tab back to non-selected:

 objID='obj'+tabSelected;
document.getElementById(objID).src='images/toprightNotSel.p
ng';

 //Change newly selected tab to selected:

 objID='obj'+tab;

document.getElementById(objID).src='images/toprightSel.png'
;

 tabSelected = tab;

 }

} //end function changeSelected()

function DrawMenu() {

with (document) {

 for (var i = 0; i < tabText.length; i++) {

writeln('<td>');

writeln('<table cellPadding="0" cellSpacing="0"
border="0">');

writeln('<tr>');

writeln('<td>');

writeln('</td
align="bottom">');

writeln('<td class="tabtop"></td>');

write('<td>');

write('<img id="obj'+i+'" align="bottom" src="images/');

 if (i==0)

 write('toprightSel.png">')

 else

 61

 write('toprightNotSel.png">');

writeln('</td></tr>');

writeln('<tr>');

writeln('<td class="tableft"></td>');

writeln('<td class="tabmid">');

writeln('<a onclick="tab='+i+';changeSelected(tab);"');

writeln('
href="option'+i+'.html">'+tabText[i]+'</td>');

writeln('<td class="tabright"></td>');

writeln('</tr></table></td>');

 } //end for

 } //end with

} //end function DrawMenu()
Code 3. menuDrawer.js

For the tab-like buttons I used six small images, with a total
size of about 1k. The names of the first three are
highlighted here, the other three show in the style sheet as
background images. Only the top right segment of the tabs
changes when one or another tab is selected, and only this
segment has two versions that swap when a tab is selected.
In function changeSelected(tab) the image objects are
referenced by their ids, rather than by their names. This
way the site works in Netscape 6, too, not just in Internet
Explorer 6 and in Opera 7. In the latest W3C
recommendations of migrating pages to XHTML, a stricter
HTML, names have been completely expelled. You can
read a short introduction of XHTML in this book.
At some places I had to use the document.write()
function instead of document.writeln(). It is very
important not to place a white space (a new line) between
the tags and </td>. If you do, the images of the
buttons will disintegrate to their graphical elements in
Internet Explorer and in Netscape.

 62

Here is the last piece of code, the linked style sheet file:
 /* menuDrawerStyle.css version 1.0 creates tabs in a
menu frame to switch content in a center frame.
Author of version 1.0: L. Naszodi Jan 14, 2004. You
are allowed to use and modify the code freely but the
author of the original version must be mentioned in a
comment. */
body{margin:5px 5px 0 50px;/*top right bottom left */
 padding:0 0 0 0;
 font-family:'Times New Roman',Times, serif; font-
weight:bold;
 font-size:14pt; text-align: left;
 background: url(images/tagEdge.gif); background-
repeat:repeat-x;
 background-position: bottom; line-height:100%;}
h1 {background-color: lightblue; text-align: center;
font-size:20px;}
a { font-size: 18px; font-weight: bold; text-
decoration: none; margin: 0 0 0 0; padding: 0 0 0 0;
border: 0; text-decoration: none; }
a:hover { background: silver; color: darkblue;}
td.tabtop { background-image:url(images/topbar.gif);
 background-repeat:repeat-x;}
td.tabright{background-
image:url(images/rightSidebar.gif);
 background-repeat:repeat-y}
td.tableft {background-
image:url(images/leftSidebar.gif);
 background-repeat:repeat-y}
td.tabmid {background: white;/*whitens the body's
background-image*/}

Code 4. menuDrawerStyle.css.

To avoid transferring more graphics, the effect of the
mouse-over event is handled by the a:hover style element.
It works very well in all the three investigated browsers.
One minor and one major change is necessary to customize
the tool:
At the beginning of menuDrawer.js, change the values of
tabText[] array to the texts that you want to show on the
tabs. No dimensioning is necessary. Just start the indexing

 63

from [0], give them the captions of the tags, and the code
will know the number of tabs to create.
Write your content in page0.html, page1.html, etc.
Sorry, you're on your own here. I can't do this for you.
Done? Then you have a complete dynamic menu-driven
Web site. The rest of changes is a matter of taste. For
example, the widths of the tabs are variable, depending on
their captions. I like the way it is but if you don't, just put a
couple of (hard spaces) to the front and the end of
the texts of the tabText[] array, for example, in the short
'About Me' caption, and the tab widths become about
uniform.
Do you want to change the image of tabs while the mouse
passes over them? Modify the a:hover entry in the style
sheet. However, avoid any modifications that change the
size of the text. Otherwise the altering size will make the
graphics jumpy.
Good luck, and let me know about your improvement
ideas.

Summary
The suggested semi-graphical menu bar avoids lengthy opening
of your Web page. The buttons have all the usual dynamics, such
as change at mouse over, mouse out and click events. The
number and size of applied images and the size of reusable code
are very small regardless of the number of menu elements.

Problem

Because of educational and historic reasons, the above
solution uses a table for arranging the buttons of the menu.
Rewrite the solution so that it uses div tags instead of table
elements.

?

 64

The only downside of innerHTML is
 that someone else invented it, not me.

Navigation On the Inner Track

.

Intro
In a previous article I encouraged the reader to follow the W3C
standards and the rules I collected in the Web Developers' Ten
Commandments. Before you draw the final conclusion that I am
preaching to always obey the rules, I show some exemptions. I
also mentioned that half of the innovative efforts aims at making
products proprietary, i.e., to hide information even at the cost of
making the product clumsier. Let's look at the other half, which
includes inventive ideas that may depart from the standards but
make the Web page faster and still maintainable.

A Non-standard Navigation
The window.history object has been introduced in Netscape
2 and in Internet Explorer 3 and it works in all newer
versions since. Still, it has not been incorporated in the
World Wide Web Consortium's document object model.
Should we avoid it then? Of course we shouldn't. If an
element survived three major version changes of two major
browsers each, we don't have to be afraid that it will not be
supported in the future.
The simplest way of creating customized "back" and
"forward" navigation buttons is to utilize the history object.
Here is the code:
<a>
< Back
<a>
Next >

 65

You can spare some characters if you replace the .back()
and .forward() methods with .go(-1) and .go(1),
respectively. Since window is a default object, we may but
we don't need to call the methods as window.history.back(),
window.history.forward() or window.history.go(). This
laxity is allowed but others are not. In situations where we
don't declare the document type and the browser is
forgiving enough, the page shows as intended. But we want
to create enduring solutions that last in times when
standards become stricter and sloppiness becomes less
excusable. HTML 4 and XHTML are less forgiving as
earlier HTML standards. Still, this article is about cases
when we can depart from the official standards.
The two spans are clickable but don't really look like
buttons yet. We must make them in a style description.
Here is a simple but aesthetic one:
.button {border-style: outset}

If you want it work in IE 4 or 5.0, don't put it in an inline
style, though. (You wouldn't do it anyway because you
want to separate presentation from content, right?) And
don't try it with Netscape versions earlier than 6 at all. I
already gave up supporting Internet Explorer versions older
than 5.5 and Netscape versions older than version 6. The
above deficiency is at the bottom of the list of reasons.

Automated Creation of Menus
Many times we need to dynamically create page elements
and change their contents. Starting from the above solution
of the back button, here is a useful example for object
creation. Let's say, you need to display a menu in several
pages. Different pages should show a menu of the same
look but of different menu items. You can make one
common style sheet and link it to all pages. You can create
separate lists of items for the different pages or one data set
for all lists. The lists can be stored in a server side database,
in an external XML file, in XML data islands embedded in

 66

the individual pages or in individual arrays in each page.
For simplicity, I will use the individual array per page
approach but the technique of menu creation is independent
from the source of data. If the items come from an XML
file, data set, or from a database, you can dump them in an
array and from there the process is the same as below. We
can use multi-dimensional arrays, if we also want to store
other information in it. For example, each item may
correspond with a file name. Then the set of file names can
be stored in a second column of the array. However, the
corresponding file name can be simply the button's label
with an .html extension. In this case, a second column of
the array is unnecessary because the file names can be
dynamically generated from the item strings. This will
happen in the example.
Let's fill up the Items[] array with some menu items:
var Items as new Array;
Items[0] = 'Home';
Items[1] = 'Arts';
Items[2] = 'Books';
Items[3] = 'About';

We can create corresponding menu buttons in a static
HTML code, similar to the ones in the previous section:

Home

Arts

Books

About

If we need 20 buttons, we should write 20 similar lines and
manually paste each array element in them, twice in each
line. This is the solution that we can do with a stupid text
editing program by copying, pasting, and modifying 20
lines. It is a boring process. In the meantime we can listen
to music and pray that we won't mess it up. But if we know
the routine, why don't we make the computer do the boring

 67

stuff? When I say computer, I don't mean the Web editor
program in the computer. The difference between the code
generated by the Web editor program and ours is that ours
will be shorter, faster and more intelligent. The following
script will create the same buttons:
function createButtons() {
 for (var i=0; i<Items.length; i++){
 document.write('<span class="button" id="btn' + i
+ '"><a href="');
 document.write(Items[i] + '.html"> ' + Items[i] +
' ')
 }
}//end function createButtons()
//Invoke:
createButtons();

The size of the Javascript code is about the size of the
HTML code of four buttons but the JavaScript’s size does
not grow with the number of buttons while an editor-
generated HTML code's size does. Our script is written
once for all present and future pages, as opposed to their
HTML code. Also, it loads once in a browsing session and
executes from memory as many times as many new page
openings invoke it. Naturally, the individual pages can have
different set of items in their arrays, without rewriting our
button-generating script for each new button set on each
new page.

Fast Dynamic Changes
As I mentioned in One Code Fits All, all major browser
makers have accepted the innerHTML object but it is still
not a W3C standard. The reason is simple. It does not fit in
the W3C document object model. As Peter-Paul Koch, a
freelance Web developer in Amsterdam pointed out in
QuirksMode.org, changing a tag's content with innerHTML
is much faster than with the corresponding W3C DOM
method. The change of the above created buttons occur
when a new page is loaded with the same style, same

 68

Javascript but with different Items array. In fact, it is not a
change; it is recreation. (Not in a sense of leisure but of
regeneration. But it isn't hard work either, is it.) Can we
change a button's label and its linking target without
jumping to a new page? The answer is yes, yes. I say yes
twice because I am going to show you two solutions. The
first will use a standard method, the second the non-
standard innerHTML.

Here is a live problem to solve. The opening page of a Web
site is usually called index.html or default.html, and not
Home.html, as the linked file name would be generated in
the above solution. When you enter a URL in the address
bar, like www.scriptwell.net, it opens the default.html from
the site's root directory. How can we change the link of the
Home button from Home.html to default.html in all the
other pages? The process is straightforward. First, create
the button as shown above. The difference is that we need
to identify the anchors with unique id's, because we want
to change their href attributes. The core of the modified
for loop will be as follows:
document.write('<span class="button" id="btn' + i +
'"><a href="');
document.write(Items[i] + '.html" id="anc' + i +> ' +
Items[i])
write(' ')

As a second step, after the for loop reset the href
attribute of anc0 anchor:
id = "anc0";
document.getElementById(id).href = "default.html";

Are we done yet? With the first solution, we are. But here
is another solution with innerHTML. It will rewrite
everything between the start tag <div id="btn0"> and
the end tag </div>. Skip the first step of the previous
solution and replace the code in the second step with this:

 69

id = "btn0";
document.getElementById(id).innerHTML =
 ' Home '

The opportunities that innerHTML offers are limitless.
We can make AJAX-like effects without knowing AJAX.
Once you can change the HTML between tags, you can do
anything and everything, without utilizing the Document
Object Model. Imagine that you are changing the content
between <body> and </body>...

Summary
Utilizing non-standard elements, like innerHTML, can be
justified. It is absolutely proper once the industry accepted the
element and it is better than the standard alternatives. I show an
object method and an object property that work in all modern
browsers and are superior over the ones that have already been
incorporated in the W3C document object model.

Questions and Problems
1. Can you apply one-dimensional arrays for storing

the labels and the linked file names if a menu item
consists of more than one word? (Help: Write a
function that generates one-word filenames from the
multi-word items by cutting out the spaces between the
words.)

2. Can your solution link to "Yahoo!"? The problem
here is that a file name cannot contain an exclamation
mark. Consider other possible file name limitations,
like all-lowercase letters, disallowed characters, etc.

?

 70

This page has been left intentionally blank.

 71

PART 2. USABILITY

Don’t terrorize me!
If you want a string in lower case,

make it lower case yourself.

 Usability, Abusability

The Wrong Message

Intro
As the Developer's Bible says: "Thou shalt not leave loose ends
in thy programme." But are all those branches fixed that end with
messages? My message to those developers who think that a
message can replace their responsibility to finish their jobs is: "We
don't eat half-baked bread. Why must we consume half-baked
programs?"
In this article I will use the word stupid several times. Those who
think of this word as four-letter, i.e., too offensive, stop reading
now. Stupid, stupid, stupid. Stupid.

It would be ridiculous if an application stopped in the
middle of a calculation and instructed the user to pick up a
pocket calculator, sum a row of numbers seen on the screen
and enter the result in the computer. We bought a computer
system because we want it to add numbers for us and not
vice versa. Do programs make us do things that they are
supposed to do? Unfortunately, yes. The following example
of an annoying application is real. The messages have been
recreated, their headers modified to hide their sources and

 72

to avoid legal consequences. Successful companies with
unintelligent developers may have very smart legal
representatives.

The wrong first impression
The login instruction of the program tells me to enter the
user name in all lowercase letters. Even worse, the
instruction comes after the first attempt of logging in:

We get these kind of ignominious messages so often that
we feel guilty daring to capitalize our own names or not to
check the Caps Lock key before typing. Most of us feel
stupid compared to the genius who can program a logon
screen. But can he really? My message to the programmer
would be this: "Do not terrorize me! If you want the string
in lower case, make it lower case. Instead of instructing us
to reenter, why don't you modify your stupid program?" A
single line in Javascript, like
username = username.toLowerCase()
would make it right. The form of the statement may vary,
depending on the language used. But when I say language,
I mean programming language and not the language that
does not use the word "stupid". You may say that this is not
the case with case sensitive user names and you are right.
But the above example is different. A user name that must
use lower case letters only is not case sensitive, only its
internal representation is. Similarly, user entries of e-mail

 73

addresses and Web page addresses should never require
case sensitive input. The program should not distinguish
between the entries of MeStupid@MyStupidSite.com and
mestupid@mystupidsite.com. It should accept both variants
and should take care of the conversion internally if
necessary.

The wrong developer
Then another problematic message pops up as proof of the
developer's dilettantism. Several variants of the following
have been discussed on Web forums since years. When
someone wants to close a window programmatically, the
browser may display the message:

It is pretty annoying. The developer should handle the case
when the user clicks No. Many avert responsibility saying
that it's an "IE thing", not the developer's fault. Some forum
members say that one cannot rid of the message because it
is related to some kind of security issue. Others suggest
hacking solutions that work with certain browsers and don't
work with others. The worst suggest to tell the user in the
manual or in a previous screen to answer Yes to this
question. A question should not come up if the user does
not have a real choice of answers. These "experts" should
know that there is a cross-browser solution. In short, a
window.opener=top
Javascript statement should precede the

 74

window.close()
command and the annoying message simply does not show
up; the window closes without bothering the user with a
question that he has nothing to do with.

The wrong message
Many programmers ignore the importance of correct
messages. Deep in their heart they would just notify the
user:

Of course, the user is dear; the message must be polite and
technical. Beside the courteous language, the following real
text

carries about the same message as the previous one and
does not help us much, either. After the obnoxious login
incident and the pointless error message a user with self-
respect may say to the developer: "I am not stupid. But you
are. If you know that my answer is incorrect, why don't you

 75

tell me why? Did I type a longer string than expected? Did
I enter a decimal point where you wanted an integer?" But
the developer has a great advantage: Unlike you to him, he
can send out annoying messages to you.
I must use another application every day that explicitly says
at a point: "Do not enter a command manually." Because
the particular command I must issue is not programmed in
a function key or in a menu, I have to manually enter it.
There is no text box because the program is not prepared
for data entry. Wherever the cursor is on the screen, I have
to start typing. How do I know about this "feature"? I
participated in a training where I was told so. To me, a
program is not a program yet if it requires training, where
experts explain what to do when a controversial message
shows up. Same with user's manuals. I created complex
expert systems that do not require training or manual.
When a new user misses them, I usually ask: "Can you use
Windows without a manual? Then you don't need a manual
to my program, either."
Complexity is a private matter and it should stay between
the developer and his product. The user interface must be
self-explanatory, regardless of the complicated internal
processes. The developers should delete most things from
the manuals and put them in the program, where they
belong. Context-sensitive help, meaningful captions,
reasonable messages and finished programming tasks are
the way to go. An application needs some more work
before distribution, if it has a paragraph in its manual:
"When you see the message Press any key you may press
any key, except the Tab key or any of the function keys."

 76

The wrong address
The torture does not end here. After a common action a
new message pops up:

Getting this error, the benign user assumes that something
happened outside the application, for example, the network
connection has been lost. However, in our case the message
relates to an internal problem of the application that the
developer did not handle properly. The message obviously
targeted the program tester, not the user.
When the postman drops a letter in my mailbox with my
address but with the name of the previous tenant, I can send
the mail back with a "Wrong address, return to sender"
note. What can I do with a message like this? The
developer could have done something. He had the problem
coming to him and he did not finish the branch properly.
The application is accompanied with long manual,
including interpretation of error messages. If you are lucky,
you may find the explanation, what to do in case of certain
errors. Many times the problem solving process could have
been incorporated in the program, rather than displaying
the error message and telling us to look up the solution in
the manual. So, if you get a message that makes you read
the manual or one that instructs you to pick up your pocket

 77

calculator, return the program to the sender. It is not ready
for sale yet.

Summary
A program is not done yet if it instructs you to do things that
could have been automated.
A program is not done yet if it displays messages that do
not apply to you.
A program is not done yet if it forces you to read the
manual to understand the messages.
A program is not done yet if it has a large manual.
A program is not done yet if it needs extensive training.

Questions and Problems
1. Does your program display messages instead of

doing what the user is instructed to do?
2. Does your program have a large manual? Are there

paragraphs in the manual that could be preceded
with a sentence: "If you can use Windows then you
don't need to read this"? If you took out these
paragraphs, is the manual still bulky?

3. Have you ever felt that your development is not
done yet but financial or organizational pressure
made you give it out prematurely? Did you "finish"
unfinished branches with messages then?

?

 78

Navigare Necesse Est ...

Pompeius (First Century, B.C.)

Navigating on the Web is necessary.
From a job description

 (Twenty First Century, A.C.)

Got Lost on the Web?

Intro
The ancient Romans did not have Internet but they
already knew one of its biggest problems: to recapture
the location where your navigation led you.

You are an experienced Web surfer. You just found an interesting
article on 'Human Stupidity' but your boss is approaching your
desk. A double-click highlights and selects the site's address in
the URL box, a Ctrl/C copies it to the clipboard and another click
sends the browser to the home page of the corporation's Web
site. You may keep on surfing while your boss is breathing in your
neck or wants to see something on your computer. Once he left,
you retrieve the saved address by pasting it from the clipboard to
the address bar but the article of interest just isn't there.

Where have all the pages gone?
Take a simple scenario. You want to share the found article
on 'Human Stupidity' with your brother. Sending the copied
URL of the visited page in an email will take him to the
same article that your browser is displaying now, right?
Wrong. OK, you may say, in our fast revolving world sites
change fast. They probably restructured their site before
your brother could get there. Right? Wrong again.
The above scenarios would only restore simple pages.
However, online news sources and in general, most Web
sites build their pages in frames. The address shown in the

 79

URL box is that of the frameset. It does not refer to the
actual contents of the frames. The present state of the
browser is a good example, if you opened it with my book-
imitating frame. The frame's file name is default.html.
No matter how you go back and forth among the articles,
i.e., how you change the content of the main frame, the
address bar will show the same reference, default.html.
If you copy and paste the URL from here or from the
previous article, you will get a third content, i.e., the
opening state of the frame.
There are ways to pick the address of the very article you
are seeing now. In Internet Explorer, you need to right-
click on the article and take the URL from the Properties
window, or, click on the Create Shortcut item that adds an
icon to your desktop, which links to the article. Either way,
reopening the link will not show the whole page what you
have seen, only the content of the right-clicked frame. This
may be good in case you don't want to show the
surrounding ads to your brother, and may be bad if some
other frames contain valuable details. In slightly different
ways, one can take the address of the frame's content in
Opera and in Netscape, too. In all cases, the problem is that
the surfer should know that he is dealing with the content
of a frame, not the entire page, and he has to apply special
tricks to get the address of that content.
Let's look at the issue from the viewpoint of a Web
developer. Do you want to disappoint a visitor of your site,
who is intelligent enough to know how to copy and paste
the URL of a simple page but not technical enough to know
about HTML frames at all? Of course not. Some nice
designs don't even show the visitor that the page is
constructed in a frameset.
The contradiction comes from the fact that the URL box
shows the frameset's address only, no matter how the
frames changed their contents after a few clicks on links.

 80

There is a way to create a mutual and unambiguous
correspondence between the URL and the actual content. In
Javascript terms, the URL box shows the value of the
location object. The location object may end with a so-
called search string. The search string always starts with a
'?' character. Even if there is no search string attached to the
location string, the search string has an internal value,
namely a '?'. We can store and retrieve the actual state of
the frame in the search string. Javascript can access the
search string as document.location.search. The rest
is finger play. After the file name of the frameset, we can
programmatically put a distinctive search string in the URL
to reference the content of the changing frame. When
pasting the extended URL to the URL box and hitting the
Go button, the loaded HTML file should evaluate the
search string and load the corresponding file into the
adequate frame.
Again, the first part of the URL should contain the address
of the frameset file as before and the second part should
somehow, not necessarily with its file name, refer to the file
that should be displayed inside the frame. Usually, a link
that changes the content of a frame does not contain the
frame's address and a click on the link does not change the
URL box. Now, in the href element of the link we need to
provide the frame's address, because we want the URL
show it along with the reference to the linked page. It
means that links that previously pointed to content files,
should point to the frameset file with a search string
referring to the content file.
Let's modify the sample files of a previous article,
Dynamic Menu Under 10k. It has a frameset called
index.html, with a top frame that contains links and with a
bottom frame that displays the contents according to the
clicked links:

 81

<html>
 <head>
 <title>Home frame</title>
 </head>
 <frameset rows="90,*" border="0" framespacing="0"
frameborder="no">
 <frame src="top_frame.html" name="menu"
scrolling="NO" noresize>
 <frame src="page0.html" name="content" noresize>
 </frameset>
</html>

Code 1. The original index.html.

Clicking the tabs alters the content but leaves the URL
unchanged:

Various contents under the same address

 82

To recognize the search string, a new frameset is created
dynamically, according to the search string:
 <html>
 <head>
 <title>Home frame</title>
 </head>
 <script type="text/Javascript">
 var choice=document.location.search;//always
starts with a '?'
 frmsrc='page0.html'; //default
 if (choice.length>1) {//not just the '?'

 choice=choice.substring(choice.lastIndexOf('=')+1,

choice.length);
 frmsrc='page'+choice+'.html?choice='+choice
 }
 with (document) {
 writeln('<frameset rows="90,*" border="0"
 framespacing="0" frameborder="no">');
 writeln('frame src="top_framesimple.html"
name="menu"
 scrolling="NO" noresize>');
 writeln('frame src="' + frmsrc + '"
name="content" noresize>');
 writeln('</frameset>');
 }
 </script>
</html>

Code 2. The modified index.html.

The URL box accepts the search string ?choice=2 that
opens page2.html in the frame. Entering different
choices in the URL opens different pages and vice versa. If
you open a page by clicking on the corresponding link, the
choice of page will be reflected in the URL.
The above changes do not make the URL follow the clicks
on the tabs. To make the URL box reflect the displayed
page, we should make two more simple changes.
Change the base target in the top_frame.html's head
from content to _top:
 <base target="_top">

 83

?

Change the href elements in function DrawMenu() to
refer to the frameset with the proper search string:
document.writeln('
href="indexnew.html?choice='+i+'">'+
tabText[i]+'</td>');

A third change is necessary to complete the project. The
original Javascript code taken from the previous article
distinguishes between selected and unselected tabs. The
menu drawing function in the sample of this article has
been simplified. Switching the images by tab selection has
been removed, not to create confusion. One can put it back
and make the image switch controlled by the search string,
similarly to the content switch of the lower frame. But let
this be your homework, folks. Have a good navigation.
Ahoy!

Closing thought
Once I brought up the topic, I want to discuss another
application of search strings. I will show you how those
smart, self-filled emails are created. But this would be the
content of another article ...

Summary
The content and the URL of a page do not necessarily
correspond when the page is a frameset. The suggested technique
creates a mutual and unambiguous correspondence between the
URL and the content. This way, a copied URL provides the same
content as the original page.

Practice question
The sample code 2 has been called with the search string
?choice=2. Would it work if we used the word
selection instead of choice here? Why or why not?
(Look at code 2.)

 84

To get a new browser is slightly cheaper
than my time - because it is free.

A Five-Minute XHTML Class

Intro
Are you planning to take XHTML classes or read an XHTML
book? If you know HTML well, don't do it, unless advised below.
XHTML is not more than a cleaner and stricter HTML. OK, it is
extensible. That is what the X stands for. But who cares about
extensibility when one can do almost anything with HTML, CSS
and Javascript?
HTML and XHTML have about the same tags, attributes
and events. Some HTML attributes that became deprecated
in version 4.01 finally are out in XHTML version 1. Here is
an example. Because of backward compatibility, the <td>
HTML tag still may have the obsolete bgcolor, width, and
nowrap attributes, although other up-to-date solutions can
deliver the same features. In XHTML the formatting
attributes are not just outdated but unsupported, too. So, the
same

<td bgcolor="red"> line in the same browser can or cannot
paint the table cell red, depending on the first, DTD line of
the page. If it says
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

the red background does not show. If it says
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN">

the red background shows in the above table cell. I would
not encourage you to use the latter DTD line for an alleged
XHTML page just to keep the obsolete elements, because

 85

deprecated elements and HTML as a whole sooner or later
become unsupported. Well, probably later than sooner.
Still, you better replace the obsolete elements with the
newer ones. I suggest to paint the background yellow as
seen above with an inline style:
XHTML 1.0
Strict.

Presentation with style elements has already been
introduced in HTML. By applying them, one can move
smoothly in the XHTML world. Until you replace all
HTML presentational elements with style elements, you
may stick to the Transitional DOCTYPE.
The basic rules that differentiate XHTML from HTML are
as follow:
• XHTML elements must be properly nested.
• XHTML documents must have the <html> root

element.
• Tag names and attribute names must be in lowercase.
• All XHTML elements must be closed.
• All attributes must have a value.
• Attribute values must be (single or double) quoted.
• The id attribute replaces the name attribute.
If you were a conscious HTML developer you probably
obeyed about two-third of the above rules anyway. Here is
an example that may work in HTML but doesn't work in
XHTML:

<html>
 <head><title>Ill formed</title>
 <body> <i>Hey you!</i>

 Check the box if you like to rock and roll:
 <input type=checkbox checked>
 </body>
</html>

 86

Can you see the problems? Come on, name at least one!

1. <i>text</i> is not properly nested.
2. <head> is not closed. The </head> end tag is

missing.
3. The checkbox value is not quoted and the checked

attribute of the input box is empty. The correct form
is
<input type="checkbox" checked="checked" />

4.
 is not closed.

OK, as an HTML developer, you were not supposed to
know the last one. Empty elements, i.e., meta, link, br
and img that don't have end tags should be closed like this:

. A space before the forward slash "/" character is
not part of the rule but necessary to avoid a glitch in
Netscape.)
A kind note to the reader: If you need further explanation to
the above example, you need to go to that XHTML class or
read that XHTML book. If you did not understand the first
two problems, you need to take an HTML course before
dealing with XHTML.
Once you follow the above rules, you may try to change
your DOCTYPE from HTML 4.01 Transitional to XHTML
1.0 Transitional. I would not advise you to try the
XHTML Strict standard at first. The HTML version of this
page, for example, is valid XHTML 1.0 Transitional but it
would not pass the strict criteria, because I used the target
attribute for an anchor, which is unacceptable by XHTML
1.0 Strict. If I set the target by adding a

<base target="_blank" />

 87

tag in the head, I could have eliminated the target attribute
from the restricted <a> tag but then, my navigation buttons
worked incorrectly and opened the previous or next page in
a new window. On the other hand, putting the
target="_blank" attribute of the anchors in the Javascript
code that creates the navigation buttons, would have made
me strict XHTML compliant. In this case the page would
have passed the strict criteria because the non-compliant
part was hidden in a script, in which the validator does not
check the generated HTML or XHTML code. Then I would
have displayed the W3C's XHTML 1.0 Strict icon legally
but I would not be proud of it. I am proud of the cross-
browser logo though, that I designed, granted to myself and
displayed at the bottom of all pages on my site.
The following anchor is XHTML 1.0 Strict compliant. It
opens the page.html page correctly in a new window if
Javascript is enabled but in the same window if Javascript
is disabled:

<a href="page.html"
onclick="window.open('page.html','myWindow',
width=400, height=400');
return false">Open page.html

You may test the validity of pages at
http://validator.w3.org. Are your pages valid XHTML
Transitional? Good! Actually, transitional does not mean
exactly what it says. One should also use transitional
DOCTYPE if one assumes that the used browser does not
understand CSS and the developer has to double her
presentational efforts by including old fashion formatting
with HTML tags, not only with CSS. If you are heading in
that direction, you really need to go to a class or read an
XHTML book. Recently I gave up dealing with browsers
without CSS capability. I just tell the users: Go get a new

 88

browser that supports Cascading Style Sheets. It is slightly
cheaper than my time because it is free.
Again, if you understood the above seven rules and your
page passed the XHTML Transitional validation, you are
an XHTML developer already. Class dismissed.

Summary
Following the standards helps you to create fast,
maintainable cross-browser pages. Big Web sites seem to
be ignorant and they don't obey the rules. You can do better
than them without taking XHTML classes.
XHTML is not more than a cleaner and stricter HTML. Strict
XHTML pages are rendered faster than loosely written HTML
pages.

Problem
In a previous article, Let's Make the World Round Again, I
showed a solution for creating rounded frames. The
solution uses table elements with non-XHTML background
elements, discussed in the introduction of this article.
Rewrite the roundborder.js script to make it XHTML-
compliant.

?

 89

No matter how fast the page renders,
twice as slow is always twice as slow.

The Ultimate
XHTML Template

Intro
You may have read some articles about migrating from
HTML to XHTML that suggest that all you need is to
rewrite the page by following a few rules; stick a doctype in
front of it and your page will become a fine and valid
XHTML. Don't believe them. The page may become valid
XHTML but not fine. You remove the doctype and the page
looks fine again. Now you are close to forget the whole
standardization issue. I hope that I didn't make the same
false impression of easiness with my Five-Minute XHTML
Class. If I did, I have to refine my statements. Nevertheless,
don't give up! Creating good-looking standard pages is still
not too difficult.
When I said that HTML and XHTML have about the same
tags, attributes and events I wanted to put the emphasis on
the word 'about'. When you decided to create XHTML
pages you agreed to obey stricter rules than as if you write
HTML. However, if you only think that you developed an
XHTML page and, in fact, it is not XHTML, the browser
has to reinterpret it according to a lower standard that the
page meets. This mode of operation, when browsers try To
Whom It May Concern: find an appropriate older mode to
display an (X)HTML page is called quirks mode. Quirks
mode also kicks in when the page does not contain a

 90

doctype declaration or when it contains a doctype that calls
for quirks mode.
These rollbacks to lower standards result in an
unpredictable and non-uniform look of the page. One
browser may stop rolling back at an earlier version as the
other. Ad hoc modifications, trial-and-error efforts may fix
outstanding discrepancies but the general problems will
come back. A painstakingly designed page may look the
same in FireFox 1.0 and in Internet Explorer 6.0 but newer
browser versions like IE 7 will display them differently,
and the tinkering must start again. For example, IE 6
implemented a confusing rule. If a doctype that triggers
strict mode is preceded by an xml prolog, like
<?xml version="1.0" encoding="iso-8859-1"?>,
the browser falls back in quirks mode. Fortunately
Microsoft removed this "feature" from IE 7, and
unfortunately those developers, who used it, have to tinker
their pages again to satisfy the IE 7 users. Henry Sivonen, a
Finnish expert, collected an excellent list of relationships
between doctypes, browser versions and modes.
The transition from HTML to XHTML emphasized the
need to eliminate tables as basic design elements. Not only
because rendering a table is a difficult task for a browser,
and using tables for arranging non-tabular page elements is
not a good idea. The browser must read and parse the table
twice before it finally arranges all the elements, because the
content and form of the last cell may redefine the
arrangement of all the previous cells. So, if you design your
page structure in a table, as most designers do, the browser
will go through the whole page twice. No matter how fast
the page renders, twice as slow is always twice as slow. But
forget about speed concerns now.
The main reason to eliminate old aligning table structures is
that XHTML introduced some drastic changes in table
elements. For example, the height attribute and style have

 91

been expelled from the table, row and td tags. These
changes have been logical and served the goal of separating
presentation from content, but they have ruined many
designs that were based on an outside table at top level.
Most designs included multiple tables inside tables inside a
table right below the body level. In strict mode these older
table-driven layouts easily disintegrate.
The question is whether we should force the newer
browsers back into quirks mode to reserve the old layouts,
or, we should revisit our codes and redesign our pages
without tables in XHTML. The latter needs some extra
efforts, than dragging and dropping, but again, if you are
willing to move in the solid field of XHTML, your pages
will become faster, more predictable, cross-browser and
platform independent. In populist language I may ask: Do
you want to make pages for the past or for the future? In
fact, keeping your pages running in quirks mode is also for
the future in a sense, because it provides job security: Your
pages will always need your modifications as browsers
evolve. XHTML is the progressive way of approach and it
may solve returning problems for good. Your page will be
displayed correctly for eternity, or at least five more years,
and through one major browser generation change without
your touchups, even if you lose your job tomorrow. (What
a great perspective!)

The desired look
I show some basic designs that many developers cannot
accomplish without tables. My designs don't use tables;
work correctly both in HTML and XHTML; from quirks to
strict modes; in any modern browsers. They do not use
scripts for the alignment or for the resizing. They look the
same on various monitors with different resolutions, in
various browsers and browser versions, in various
platforms.

 92

The sample page represents a commonly desired page
layout. It has a header, a main block, and a footer. The page
of fixed width is horizontally centered, so, it does not tip
over on a large, high resolution screen, as some left aligned
pages do. Vertically it spans across the whole height of the
window. Regardless of the window height, if the filled area
were smaller than the height of the page, the height spans
vertically and the footer sticks to the bottom of the browser
window. Naturally, if the filled area does not fit in the
window, the page does not contract vertically or
horizontally but scroll bars appear and help to show the
outstanding parts of the page.
The sample page is valid XHTML with XHTML doctype.
So, it will not fall back to quirks mode in any modern
browsers. However, I can remove the doctype, making the
page fall back in quirks mode, and the layout remains the
same. This can be handy if I do something quirky, like use
the non-standard innerHTML inside the basic structure. I
checked it with Mozilla/FireFox 1.5, Internet Explorer 6
and 7 on Windows, Opera, Safari on Mac and FireFox on
Linux, and it looks the same.

The new template
Let's start to play with a simple page that has the usual
header - main block - footer arrangement, and some
intentionally chosen ugly colors to draw attention to the
structure.
Template #1, the first modified version centers the page
horizontally. Unlike many other solutions, this one works
both in quirks and standard modes, and looks the same in
Mozilla/FireFox, in IE 6 or 7 and in Safari. You can test the
former mode by removing the strict XHTML doctype
declaration. You may replace it with transitional XHTML
doctype, too. Sometimes I'm intentionally rolling back to

 93

transitional XHTML because I like iframes and
innerHTML, and they are not allowed in strict documents.
The following style horizontally centers the fixed width div
by shifting its left edge to center, then back half width:
#mid {
 width:760px;
 position:relative; left:50%; /*Shift left edge
to center*/
 margin-left:-380px; /*Shift back half
width*/
}

Now that we centered the page horizontally, we can work
on aligning it vertically. After all, a short page in a long
window can give a feeling of "tipping-over", too, as left
aligned pages in a wide window. There are two ways to
improve short pages: We either fill the full height of the
window, by pushing down the footer to the bottom, or,
centering the page vertically as well.
A couple of simple CSS additions span the page to the full
height of the window:
html, body {height: 100%;}

is necessary for FireFox in strict mode, but it is required in
IE in quirks mode, too.
The actual full-height layout is due to the CSS
#mid {
 min-height: 100%;
 height: 100%;
}

The first attribute makes FireFox work correctly in strict
mode but is unknown for IE; the latter is for IE and for
some doctype constellations in FF.
See the horizontally centered and vertically spanned page,
Template #2.
Again, the template displays uniformly in all modern
browsers, in both quirks and standard modes, with or
without a strict or transitional doctype.

 94

Now that the page occupies the whole window height, we
can push the footer to its bottom.
Let's add the attributes
 position: absolute;
 height: auto !important;

before height: 100%;
to #mid, and
 position: absolute;
 bottom: -1px !important;
 height: 20px; margin-top:-20px;

to the #footer CSS, and voila! In Template #3 the footer is
sticking to the bottom of the window when the page height
does not exceed the window height.
The following improvement makes the viewable area
shorter and centers Template #4 vertically:
body { /* in FF strict requires for spanning the
height*/
 height: 80%;
/* In quirks mode 100% pushes the footer to the
bottom */
}

#mid {
 min-height: 80%;/*Works for FF, unknown by
IE.*/
 height: 80%; /* Works for IE 6 and 7. */
 top:8%; /* = (100% - height)*height/200 */
}

Final Note
Printing horizontally centered pages can be a pain in some
browsers. An additional simple printer-only CSS will fix
the problem. In our case place a link in the head:
<link href="printstyle.css" rel="stylesheet"
type="text/css"
media="print" />

 95

?

and the following styles in the printstyle.css file realign the
page for print:
body {
 margin:1em; padding:1em; background-
color:white;
 font-size: 12pt; font-family:Georgia serif
}
.mid, #mid {
 margin:1em; padding:1em; border:0px;
width:760px;
 position:relative; left:0; width: auto;
 color:black; background-color:white;
}

Summary
This article suggests a tableless XHTML template that
provides the page layout that many developers prefer, and a
few is able to correctly create without using tables: The
content is placed in a fixed width column and centered in
the window, no matter what the window size is. This design
is obviously superior to the so-called liquid, relative-width
design, which automatically narrows the page elements
when the user narrows the window width. The suggested
design also centers a short page vertically, or makes it fill
the full height of the window, if its content-filled height
would be shorter than the window height. This feature
comes handy when the page contains a footer that should
stick to the bottom of the window.

Problems
• Can you add a shadow to the left and bottom edges

to the above designs that give the page a 3D effect
as if it was elevated a little? I accept graphical
solutions but pure CSS is preferred. However, no
tables, please!

 96

• Have you already used templates that provide
similar centered or vertically spanned layouts? If
yes, please check the following:

o Do they look the same in FF, IE6, IE7,
Opera, and Safari?

o How about removing the doctype; setting
the doctype to XHTML strict or XHTML
transitional? Does the page look still the
same in all cases? Again, check the three
standards with at least three of the above
browsers.

o If your sample page passes the above nine
tests, try to disable Javascript, as many users
do and rerun the tests. Does the page still
look the same?

 97

If you think that it's not you who pays for the free software
or for the free TV channel, get out of here. This is for adults

only.

Pay for the Fly in the
Soup

Intro
Older sailors of the sea called
Internet remember the resizing
bug of Netscape 4. It was more
like an elephant, rather than a
bug. Whenever one wanted to
resize the browser's window, its
content got messed up. Since

then browsers became better but still not bug-free. This article is
about a bug of the latest browsers. But first a short history
lesson...
People over 50 may remember the pioneer age of computer
science. Most software was free. Unless it was against
national security or strict company policy, programmers
exchanged their ideas, subroutines and program snippets
free of charge. The system worked well and technology
evolved fast. Naturally, all software bore bugs but free
access to the source code helped the community to get rid
of many bugs. The open-source notion was a live practice
before the Open-Source Initiative. I remember the time
when a dozen of free editors, most of them better then
today's Notepad, were circulating in the programmers'
community.
Then there came Microsoft and other software companies
and software for fee replaced software for free. Also, loose
chats among developers were replaced with strict
communications between users and lawyers of companies.
You cannot even install or start an application without

 98

clicking on the "I agree" button that legally binds you to
obligations that you are not willing to read fully. The so-
called free software is not free anymore, either. Some
companies talk straight like the owners of Opera: "Our
supporters pay for your browser. Want a free browser?
Then put up with their advertisements. Don't like ads? Then
pay for the ad-free version."
Others are shrewder. They say their browsers are free.
Period. But you pay for Internet Explorer indirectly when
you buy Windows or a computer that has IE installed. The
development costs and the profit are hidden in other
product's price. You, as an individual, may avoid paying
directly for software but, as a member of the users'
community or as a buyer of an advertised product, pay
enormous price. Similarly, when you watch a free TV
channel with the same brand of beer in your hand as in the
guy's on the TV screen, you already paid for the TV show.
If you own a car, remember: you are paying for the "free"
TV show that has been interrupted by a shouting car
salesman. The car dealership pays the TV station and you
pay the car dealership. The price of the TV show is part of
your monthly car loan installment. The shouting salesman
is free, although you'd prefer to see him behind bars instead
of letting him interrupt the TV show that you paid for
through him. If you still think that you don't pay for the free
stuff, then get out of here. This is for adults only.

Iframe, you frame
In a previous article, Info On the Fly, I explained the use of
the iframe tag. Let's return to the fly, more exactly to the
fly in the soup. Netscape 4 introduced a revolutionary
feature, the inline layer or ilayer. It is like picture-in-picture
on TV. Microsoft did not accept the introduced tag but used
its idea and "invented" the inline frame or iframe, with a
similar functionality. The latest versions of Netscape and
Opera incorporated the iframe tag as well. However,

 99

Internet Explorer 6 has an iframe related bug. During a
full year from March 1st, 2004 I could not find any
reference or literature on this bug. It's unlikely that the fly
fell only in my soup, but hey! Some people can live with
flies in their soups. I can't. Allow me to speak up.
The problem is a little complex. When you place an iframe
in your HTML page and scroll its content dynamically, by
moving the iframe's content to an anchor, then, beside the
wanted scroll inside the iframe, the whole document
scrolls down until the top edge of the iframe reaches the
top edge of the including page or until the bottom of the
page comes up. (When I say scrolling down, I mean the
upward motion of the page, approaching its bottom.) The
phenomenon does not occur if the size of the outside page
does not exceed the size of the window or if the outside
page is already scrolled all the way down. Of course, in
these cases there is no space for further down-scrolling.
The http://www.scriptwell.net/fastweb/TOC.html contents
page is a good example. Just narrow the window's height,
drag the scrollbar a little upward, then move your mouse
over the links and you can see the whole page jumping up.
There, the iframe and the links almost reach the bottom of
the page, so, chances are that when you move the mouse
over one of the links, which event causes the dynamic
scroll of the inline frame's content, the whole page cannot
scroll much. But when you trigger the mouse-over event
with having the scrollbar higher than the bottom, you can
see the page jumping. Again, it does not happen with
Netscape 6.2 or with Opera 7. I almost wrote Netscape 6.2
and above because the first Netscape 7 worked correctly,
then, in version 7.1 the iframe bug propagated in the world
of Mozilla, too. FireFox, which is based on the same
Mozilla 5.0 version, has the jumpy attitude, just like its
sibling Netscape 7.1. Also, don't try my example with

 100

Netscape 6.0, either, because of another minor problem. NS
6.0 does not support the used onclick event in a span tag.
I tried to get around the problem but I could not find a
simple solution. It is like Netscape 4's resizing bug. The
latter could be eradicated with a one-line Javascript that
automatically refreshes the window after every resizing but
this solution created other well-documented problems that
made Netscape come up with a new version as soon as it
could. The bug I found seems more stubborn than that. The
only non-blinking work-around I found so far is so ugly
that I do not dare to publish. I hope you find a better
solution. Until then, let's accept the official standpoint: It is
not a bug. It is a feature.

Summary
The shift from free software to paid software products did
not change the fact that the products contain bugs. Some of
them can be avoided by cautious programming techniques,
some others we have to live with.
I show an undocumented one in IE 6 that bugs me.
Unfortunately, Mozilla has it in its latest version, too.
Opera fans, clap your hands...

Questions and Problems
Do advertisements bother you? How about their hidden
price you pay? How much of your cell phone bill do you
think is spent on marketing? I accept any unacceptable
answers around 50%. Do you?
Find a solution of the outlined problem. It must be of
reasonable size. It cannot suggest to load various
documents in the inline frame instead of scrolling its
content. The idea in the previous article was to have the
whole content of the iframe loaded and available
immediately, without a roundtrip to the server.

?

 101

Trust me.
It won't take long and it won't hurt.

One Code Fits All

Intro
Which browser should we consider
when writing a Web application?
Technically none of them and practically
all of them. We should write our code
the way that the resulting pages look the
same, or at least similar in all modern

browsers. Theoretically you just need to follow general, browser-
independent standards. "What standards?" you may ask.
Unfortunately that's what browser makers asked for decades, too.

The standards
The World Wide Web Consortium, W3C in short, is an
independent expert body that sets the rules. They don't
issue laws, only specifications and recommendations for
meta-languages like HTML and XML, and for styling
properties like the ones in CSS. As an organization
recommending standards for browsers, they don't create
browsers, either. They have an open-source initiative
though, on developing an Integrated Development
Environment with browser functionality, too. It is called
Amaya. Amaya is a Web editor, with the intention to be a
comprehensive client environment for testing and
evaluating new proposals for Web standards and formats.
As of January 2005, it has its version 9.0 with many good
editing features but still far from working as a fully
functioning browser. Browser makers try to follow the
rules that actually don't confront with their schedules and
financial interests. After decades of a nasty jungle war
browsers tend to agree in the most important issues. The
leading browsers, Internet Explorer, Netscape and Opera

 102

can display well-written, HTML compliant pages with
about the same look and functionality now. The rest is on
us, developers. Are we complying? I must say, no. Would
you believe that most Web sites don't follow the latest
HTML standards? I randomly checked the opening pages
of some high traffic sites. Here is the result:
Non-compliant HTML 4 compliant
Yahoo.com
AOL.com
Google.com
CNN.com
Netscape.com
Amazon.com
eBay.com
Expedia.com
MSN.com
Microsoft.com
ESPN.com
Can you find any compliant sites? Neither can I. Last I tried
the official Web site of the President of the United States:
http://www.whitehouse.gov/. Guess what, he failed, too.
But we can't expect George W to be HTML compliant
before Bill Gates.
AOL is the only one with a doctype claiming that its
opening page is XHTML compliant but it is not. Bigger
mouth, same sloppiness. It does not even follow the less
strict, HTML 4 standards. I believe that these companies
are just too big to be good. OK, their revenues are
breathtaking but can they produce a standard HTML page?
After all, they are the Web; they transact at least half of all
the traffic on the Internet. What about you? Do you think
that the only way to get rich is to neglect the rules? Be a
man (or a person, politically correcting myself, although it
does not make sense) with self-respect and show the big
shot organizations that you are better than them. You can

 103

develop W3C compliant applications. For one, this is the
way to create cross-browser pages. Even if your boss says
that the company uses only IE 6, and you don't have to care
about other browsers, you should follow the W3C
standards. And those rules that I collected in The Web
Developer's Ten Commandments. I believe that you will
make your life easier. And that of your customers. And that
of your colleagues. And the day will come when your
employer will be thankful to you. Neah! Too much of
dreaming.

The art of cross-browser scripting
In the beginning there was chaos. We developed a nice
solution for one browser, then another browser displayed it
wrong. We created another solution for the other browser,
programmatically checked the type of the actual browser
and depending on the type, branched the execution to one
or to the other solution. Then the first browser came up
with a new version that worked with the solution written
for the second browser. The branching must have been
replaced with one that contained version numbers, too. The
Internet was crowded with browser sniffers; codes that
detect which browser version is viewing the page.
Microsoft has been pushy in introducing proprietary objects
and properties in IE, such as document.all and innerHTML.
You can avoid using them but you shouldn’t necessarily
oppose everything that is not part of the W3C standards.
The first one has the practical drawback that no other
browsers accepted it. The second one carries an excellent
idea. The only downside of innerHTML is that someone else
invented it, not me. Although it is not part of the W3C
DOM, Mozilla- and Gecko-based browsers (such as Firefox
and Netscape 6) decided to support it. Most browsers newer
than May 2000 understand innerHTML and you can use it
safely.

 104

The situation is clearer nowadays. We don't have to check
which one of the numerous browser versions we actually
serve. We rather check for functionality. For example, if we
want to get or set the value of an object, we use the
getElementById() method in most browsers. Apparently, I
don't deal with those older browsers anymore that don't
understand the getElementById() method. It works since
the introduction of IE5, NS6, and Opera6. Once a feature
survives two version changes of three browsers each,
chances are that it will stay for a while. Instead of keeping
track of browsers and their versions, we may simply check
if the used function works in the running browser. Good
developers don't sniff for type and version; they test the
browser with a code similar to this:
if (isNull(document.getElementById(id))) {
 alert('Go get a newer browser that understands
getElementById()')}
else {// do the getting and the setting of values
here}

Of course, id has to be the identifier of an existent object,
for example, the body of the page. I prefer to run this test at
the opening page of an application once, because I can give
the warning at the beginning; so, I don't have to run the test
over and over again. In some applications, like in an
eBook, the author should be prepared that the visitor does
not start the reading from the front page. Some like it from
the back; others jump in the middle accidentally or
intentionally, hoping that there is a centerfold picture there.
In these cases, one needs to run the test at every occurrence
of the questionable element.
With my present awareness I am supporting IE version
5.5+, Netscape version 6.0+ and Opera version 7+. When I
say Netscape, I mean Mozilla throughout these articles.
Recent Netscape versions are built on the Mozilla open-
source code, as well as many other new browsers, like
FireFox. I hope that their common core can assure us that if

 105

a solution works in the latest Netscape, it works in other
Mozilla-based browsers.
There are still interpretation differences among Internet
Explorer, Netscape and Opera. Let's take the treatment of
spacing. Netscape and Internet Explorer give the body tag a
default margin of 8 pixels but Opera does not. Instead,
Opera applies a default padding of 8 pixels, so if one wants
to adjust the margin for an entire page and have it display
correctly in Opera, the body padding must be set as well. In
general, never let the default values kick in. Always set
them to your taste. Well, this is easy to say but difficult to
do. Not only their default values, but the interpretation of
spacing between and around objects also distinguishes
browsers. The spaces occupied by padding, border and
margin are different in different browsers. Their sizes are
usually added to the surrounded object's width and height
but sometimes deducted. If we also take the scroll bars into
account, which have non-adjustable various sizes in various
browsers and the sizes of which sometimes are added,
sometimes deducted to/from the scrollable objects' sizes,
the mess can be big. Internet Explorer 5.x is famous for its
broken box model. Padding and border are supposed to be
applied outside the box but in IE 5.x they are inside. I am
trying to sidestep rather than fight the problem. I consider
myself a perfectionist but I would not waste my time for a
pixel-perfect cross-browser layout. When the different
arrangements all look good in three major browsers, I stop
tinkering the layout and I don't try to fix what is not broke.
My advice is that try to set all the differently handled
spacing to zero or small if possible and avoid designs
where displacements by a few pixels add up and become
critical. A table row with 20 cells will be off 160 pixels at
the end of the row, if a two-pixel padding of the individual
cell is not added but deducted.

 106

As a last resort, you need to write various style sheets for
various browsers and to go back to the world of browser
sniffing. You will find many code samples on the Net. I am
afraid that too many, compared to the importance of the
issue. If you find your page similar in three major browsers,
you may grant yourself the cross-browser compliant award
and display its icon as I did below.

When Sniffing Is a Must
Browser sniffing is necessary when you cannot create a
general solution that works in every browser you consider.
So far, I could overcome the differences among the layouts
rendered by different browsers, without handling them
differently. I met one problem where I could not avoid the
various behaviors of the various browsers, though. I have
created a few Web applications that open XML data files.
XML is a nice standard for carrying data but loading an
XML data file into HTML is still a challenge. Internet
Explorer has a relatively simple method, using the
Microsoft-only ActiveX object. Unfortunately, it does not
work in its own IE for Mac. OK, we can forget those few
twisted who deny the word of PC's and Windows but stick
to Internet Explorer on a Mac. I have a good solution that
works in Mozilla browsers, like in Netscape 7 and in
FireFox. None of the above works in Opera. Should we
neglect the Opera fans? No way! There is a solution for
Opera, which actually works in the other two major
browser groups, too, even in IE for Mac. It also has its
drawbacks but it helped me to complete the jigsaw puzzle.
There is cross-browser and cross-platform solution to
loading XML data. The discussion of this solution needs a
separate book, or at least a separate article. And I am
working on it...

 107

Most visitors don't like

Web sites that attack them
with multimedia
without notice...

 How To Play Sound

Intro

Intro
So, you want the visitor to listen to your music, no matter
what kind of operating system, browser, media player
he/she has. You've already tried various solutions found on
the Internet from Mickey Mouse to Overkill Guru, but not
one worked exactly the way a sound playing Web page is
supposed to work.
This article shows you how to play sound on all major
browsers and platforms, without having any extra Web
development environment other than a text editor.

What can a visitor expect?
First of all, the solution should work, regardless of the
computer's operating system (Unix/ Linux/ Mac OS/
Windows 2000/XP, etc.), of the browser used (Internet
Explorer, Netscape, FireFox, Opera, Safari), and of the
media player installed (Windows Media Player,
QuickTime, RealOne Player, WinAmp).
Most visitors don't like Web sites that attack them with
multimedia without notice. They want to control audio and
video. The developer must give them the opportunity not to
experience what they think they wouldn't enjoy. They
expect a textual suggestion and a button to start the play, if
and when they want it.

 108

On the other hand, when they decide to try it, they want it
immediately. It is not acceptable that the visitor has to wait
2 minutes after clicking and before listening to a three-
minute song.
Most visitors won't reset or change browsers, download and
configure plug-ins, and then revisit your Web site. This
kind of advice is the last one your visitor reads from you. It
may be a correct advice, still, not accepted. When someone
sits in front of a new computer, and wants to listen to the
music immediately, would he accept the otherwise
reasonable advice that he should stand up and turn on the
radio? Then and there he may want more freedom and
choice than what a radio can offer. Some are willing to lose
comfort and waste time for freedom, some don't.
Most computer users have relatively new, (not older then
two years) versions of an operating system, of a multimedia
player, and of a browser. Don't expect them to have a
particular one or the very latest one. Don't expect them to
have a Flash player. I happen to have one, but I disabled it
because of the frequent abuses of Flash. One must watch
too many senseless, eye-infecting videos to find some good
ones.

Historical Solutions
Basically, four HTML tags can make your page play sound;
the BGSOUND background sound tag, the A hyperlink, the
EMBED, and the OBJECT tags. Other solutions involve
either Javascript programming or even more sophisticated
approaches. Let's deal with these HTML solutions first,
then with a simple script.

1. Background sound BGSOUND
Form:
<bgsound src="sample.wav" loop="-1">

 109

 BGSOUND is an Internet Explorer-only, non-standard tag.
So, if you say "Forget about it" now, you are right. But
there are more arguments against it. It loads the sound file
when the page is loaded and after the full download, it
starts to play without user intervention. The loop="-1"
attribute makes the sound replay over and over. This is one
of the most annoying solutions, so, I don't create an
example here, as I do in the following solutions. It doesn't
give the visitor any control. It's only "advantage" is that,
unlike in some other sophisticated solutions, the sound
stops immediately when the horrified visitor clicks away
from the site.

2. Hyperlink A
Form:
Play Sample

This is the simplest way and it almost always works with
the three major browsers, Internet Explorer, Mozilla
(Netscape/FireFox), and Opera. With most browser settings
and file formats, it launches a media player. If no player
application has been installed, the visitor probably has not
played sound on this computer before. A reasonable visitor
will not blame you that your site is the one that fails. The
real drawback of this solution is that the sound usually
doesn't start playing until it has been completely
downloaded, and the downloading doesn't start until one
clicks on the link. Some browsers combined with some
media player applications try to stream the sound; i.e., start
to play the sound before it is fully downloaded but it may
stall later.

 110

3. EMBED

Form:
<embed src="sample.wav" autostart="false"
loop="false">
</embed>

The EMBED tag causes the sound file to be downloaded
when the page is loaded, just like an IMG tag makes an
image load. The browser then looks for a plug-in or for a
built-in player. Internet Explorer has the least problem
because its Windows Media Player is integrated in its
newer versions. Mozilla prefers Quick Time as media
player but it is an external application. RealOne (Real
Audio Player) or WinAmp are alternative media players to
plug in. EMBED is not a standard HTML or XHTML
element, either, but all major browsers handle it very well.
This solution may not work on a networked computer in
certain network settings and may cause an "Unable to
establish connection to the server" message popping up.
You may also need to click the control more than once to
make it start.

4. OBJECT
Form:
<object height="50%" width="50%"
classid="clsid:22D6F312-B0F6-11D0-94AB-
0080C74C7E95">
<param name="AutoStart" value="1" />
<param name="FileName" value="sample.wav" />
</object>

The World Wide Web Consortium (W3C) recommends
using the OBJECT element instead of EMBED. Yet I
discuss the solution with EMBED here, because I couldn't

 111

create an OBJECT that was as user-friendly, cross-browser,
cross-platform, less plug-in dependent, as the solution with
EMBED.

And The Winner Is...
So far the streaming effect has not been discussed. All of
the above mentioned media players are capable to start
playing before the whole sound file is downloaded.
However, the commonly used file formats, .wav, .mid,
.mp3 don't tell the player to stream. Fortunately, the format
m3u does. Unfortunately, browsers don't necessarily know
what to do with an m3u file, unlike, for example, with an
.mp3 sound file or with a .gif image file. You may be as
hesitant as the browsers, so, I let you know what m3u file
is. M3U is a media queue format, also known as a playlist.
In its simplest format it is a list of sound file names,
separated with new lines. Here is an example:
Sample.mp3
music/Song.mp3
http://www.juancarlosproductions.com/music/mystaSam
ple.mp3

The first line refers to a sound file being in the same folder
as the m3u file, the second to one being in a music
subfolder, and the third to a sound file on the Net. The form
of first line is the shortest, but of the last line is the safest.
Let's save a text file that contains the third line only, or a
similar reference to a sound file, as sample.m3u, and
invoke it from an EMBED tag:
<embed src="sample.m3u" type="application/x-
mplayer2"></embed>

 112

Interestingly, m3u has its dedicated MIME type, audio/x-
mpegurl, but it doesn't always work. In default setting,
FireFox for Windows doesn't recognize audio/mpegurl (or
audio/x-mpegurl). An in-depth recent article on boutell.com
suggests to refer to the m3u as "audio/mpeg" type.
According to Thomas Boutell, this type calls the correct
media player assigned to the m3u type files. In my
experience, it doesn't work with the default settings of
Opera in Win 2000 or in XP, but the type="application/x-
mplayer2" does. In Windows XP the latter type correctly
invokes the default media player of Windows from
FireFox, too. I also experienced that the attribute
autostart="0" of the EMBED tag works in more cases than
the substantially equivalent autostart="false". My
suggestion is to call the m3u play list in the following
EMBED tag:
<embed src="sample.m3u" height="45" width="170"
 type="application/x-mplayer2" autostart="0"
 loop="0" volume="-300"></embed>

The above one-line HTML solution works with the default
setup of IE6, Opera 7.21, FireFox 1.06 (Mozilla 5),
Netscape 7.1 on Windows 2000 and XP; and sometimes
with Safari on Mac OS. To make it always work with
Mac/Safari and with FireFox on Linux and with other
Mozilla versions in non-Windows platform, I created a
Javascript. It checks and resets the MIME type of the
embed tag to "audio/mpeg", if necessary.
So, I am sharing the general solution with you. It is not too
difficult, although requires some understanding of
Javascript.

 113

General solution
To make pages context-sensitive, we need to add scripts to
the HTML. The following solution doesn't require any
special configuration of the Web server or of the client's
computer. It doesn't contain long sniffing code for finding
the platform and the browser version of the visitor's
computer. With this Javascript we can check the available
plugin and create an EMBED tag with proper MIME type.
Let's first put a SPAN in the HTML page, where we want
the EMBED tag later:
Finding plugin...

Note that I'm using the m3u file's name as the span's id.
The following function finds the SPAN with a given id and
inserts the EMBED tag into the SPAN, by replacing the
"Finding plugin..." text:
function setEmbed(ID, dir) {
 var element = document.getElementById(ID);
 //Write the following three lines in one:
 element.innerHTML = '<embed
src="'+dir+ID+'.m3u"
 autostart="0" loop="0" height="45"
width="170"
 type="'+getMimeType()+'"></embed>';
}// end function setEmbed

The getElementById function works in all modern
browsers. If you want to take care of the less up-to-date
visitors, read the One Code Fits All article. The setEmbed
function calls the getMimeType function, which returns the
proper MIME type:

 114

function getMimeType(){
var mimeType = "application/x-mplayer2"; //default
var agt=navigator.userAgent.toLowerCase();
if (navigator.mimeTypes &&
agt.indexOf("windows")==-1) {
//non-IE, no-Windows
 var
plugin=navigator.mimeTypes["audio/mpeg"].enabledPlu
gin;
 if (plugin) mimeType="audio/mpeg" //Mac/Safari &
Linux/FFox
}//end no-Windows
return mimeType
}//end function getMimeType

The navigator.mimeTypes object returns false in Internet
Explorer, and the second condition makes sure that the
platform is not Windows. The setting to default MIME type
doesn't need changes in any browsers running on Windows
2000/XP or in IE on any platform. Obviously, this function
can be refined and extended, if one wants to consider more
situations, more MIME types. I, for one, haven't checked
any Unix setup yet but some of my readers have. For
example, a Unix machine with FireFox and installed
mplayer plug-in played the embedded play list flawlessly.
The above two functions should be placed in the HEAD
section between a
<script language="JavaScript" type="text/javascript">

and a
</script>.
The best place and time to invoke the setEmbed function is
in the BODY tag after page load:
<body onload=
 "setEmbed('sample',
'http://www.yourdomain.com/music/')">

 115

The above code replaces the "Finding plugin..." text with
the media player's control buttons after the page has been
loaded and the proper player has been found. Then a little
extra time is needed to load and buffer the beginning of the
sound. During these few seconds the Play button looks
grey, i.e., disabled. Clicking on the later enabled Play
button, it will immediately start playing the sound file listed
in the sample.m3u play list, which resides in the music
subdirectory of yourdomain.com.

Summary
A simple HTML solution has been suggested for playing
audio. This solution covers at least 90% of the users; those
who use almost any browsers in Windows 2000 or XP. By
adding a dozen lines of Javascript we can also reach the
growing camp of users, who utilize other configurations,
like FireFox in Unix/Linux or Safari in Mac OS.

 116

This page has been left intentionally blank.

 117

PART 3. AJAX IN ACTION

What about repetitive HTML sections?
AJAX verbalized that the Emperor was naked.

Making The Fastest Photo Album

Intro
AJAX is not really a new technology. It revisits accepted principles
and approaches, combines others, and puts good old technical
tricks in one paradigm. When we review the web sites created by
regular development tools, we must admit that their architecture is
far from optimum regarding response speed. AJAX helps us
create faster sites by eliminating unnecessary round trips to the
server.
Since the industry got obsessed with drag-and-drop, point-and-
click development, the quality of the resulting code has became
marginal. Microsoft's FrontPage or Visual Studio, Macromedia's
Dreamweaver or ColdFusion are good products in a sense that
non-technical people can develop good-looking web sites with
them. If someone can edit a document in Word, she can make an
HTML by clicking on the “Save as a web page”. What is common
in the web pages created with the above WYSIWYG tools, or with
many other, so-called RAD tools? They all are lengthy and
redundant. They don’t consider limited band width, readability or
optimization for the speed of displaying pages. People don’t have
fast enough connections for these long pages? Have the visitors
buy a faster modem, subscribe a faster Internet provider and have
the web site owner move to a faster web server. Since the
existence of CSS it is obvious: there is no place for repetitive
styling in the HTML lines. But what about repetitive HTML
sections?

 118

BTDT, The Photo Album Application
Server-side scripting has a serious problem. It creates and
sends repetitive HTML. The script itself is not necessarily
redundant but the resulting page is. A script that creates
three rows and four columns of complex cells generates a
table of twelve cells. The internal structure of the twelve
cells is spelled out twelve times in the transferred HTML,
although only one relatively small difference may occur
among the individual cells. One may argue that repetitive
HTML is necessary because one cannot create a loop in
HTML. It is true but it does not keep us from running a
loop on the client-side that creates an HTML of repetitive
structure. Instead of a multi-second download, we can run a
client-side script in milliseconds.
AJAX verbalized that the Emperor was naked. Or better to
say, he was overdressed. Why should we retransfer the
same page with minor differences and the same structure
inside a page multiple times? Take a typical application, an
online photo album as an example. When the user wants to
see a thumbnail view, we may not need to send any HTML
from the server at all because we can create the structure
and most of the content on the client's machine.
There are dozens of applications that create photo albums.
They all compete in appearance but don’t care much about
the optimization of network traffic. A typical developer
tool gives a set of choices in colors and shapes. The better
ones collect the user’s choices and produce a CSS file
according to the chosen “skin”. Then they create as many
alike static HTML pages as many photos are included.
Clicking the Next or Previous button results not just in the
loading of a new picture but the loading of a similar HTML
page, with two differences. The obvious one is that the
source attribute of the IMG tag has been changed to the
name or URL of the new picture file. The second difference
is that the new state of the site has also been stored

 119

somewhere. Either on the server or on the client-side, for
example in a cookie, in global variables, or in a search
string of the URL.
What is the cost of sending pages and structures with minor
differences? One of the best photo album creator software
is Jalbum. It offers beautiful skins, fast and automatic
creation of slides and thumbnail pictures. However, the
resulting site contains as many similar, 10k HTML pages as
many pictures the album has. An album of only 10 pictures
contains 100k repetitive HTML.
In the following I will show a solution that uses less
HTML, a bit more client-side scripts but no server-side
scripting. It has one single HTML file of about 10k. When
we want to show two times as many pictures, Jalbum
almost doubles the size of its index.html and it doubles the
number of its 10k HTML pages. Even worse, at every
mouse click one of these 10k files will be downloaded. The
size of my solution is independent of the number of
pictures and it does not request a new HTML page at each
click.
AJAX suggests that the site should store its state on the
client-side in a hidden frame or in a hidden iframe. It also
suggests that reusable information, like the file name list of
pictures should also be stored there. In this case, download
of a new page is not necessary when changing an image or
text content. In the photo album example, clicking the Next
or Previous button would invoke the dynamic change of the
image source of the same page. This way the client requests
a download of another image only, if the image is not in the
cache already. Not even a click requesting the thumbnail
view invokes a new HTML load. You have five or fifty
albums? The same small HTML page can display all of
them.
Here are the snippets completing the above tasks:

 120

1. The IMG tag in the HTML file:
<img id="Img0" class="image" src="url or file name of
opening picture" alt="picture" />

2. The Javascript codes that handle the dynamic change of
the picture:
a) The declaration of an onclick event function of the
buttons:
objButton.onclick=function() {setImage(albumNo,
picNo)};

b) The setImage function:
function setImage(albumNo, picNo, imgId) {
 if (isNull(imgId)) imgId = "Img0";
 if (isNull(picNo)) picNo = defaultPicNo;//global
 if (isNull(albumNo)) albumNo = defaultAlbumNo;
 var oImg0 = getObj(imgId);
 oImg0.src="images/"+arrNames[albumNo][0]+"/" +
 arrNames[albumNo][picNo];
//… Maintain state here …
 return true
}

The first three lines implement a simple polymorphism.
They ensure that setImage can be called with zero to three
arguments. For example, setImage() without an argument
can display the default picture, say, when the visitor clicks
the Home link. In this case no page reload should occur as
opposed to 99.9% of web sites.
setImage calls two simple, general-purpose, cross-browser
functions that speak for themselves:
function isNull(obj) {//Check undefined explicitly
(NS6.x)
 return(obj==null)||(obj==undefined)
}

 121

function getObj(id, doc) {//doc can be an XML
document object
 if (isNull(doc)) doc = document;
 with (doc) {
 if(!isNull(getElementById(id))) return
getElementById(id);
 if(!isNull(getElementsByName(id)))
 return
getElementsByName(id);
 if(!isNull(getElementsByTagName(id)))
 return
getElementsByTagName(id)
 else return false
 }
}

The second function is also polymorph in the above sense.
With one argument, it returns an object of the window
document. Giving an XML document as the second
argument can be handy when one retrieves the directory
names and file names from an XML file. My photo album
site handles multiple albums. After I read the XML file of
all album names and picture names, I store them in a two-
dimensional array arrNames[][]. If you are not familiar
with XML, you may hard-code this array the following
way. The 0-th element of the array representing the i-th
album is the name of subdirectory in which the pictures of
the particular album reside:
arrNames[i][0] = “name of subdirectory of album i”
arrNames[i][j] = “name of picture j in album i” (j>0)

With the above design a single page load will handle the
functionality of browsing through several albums in single
view and in thumbnail view. This architecture also allows
us to play a slide show without loading new pages, by
timing and imitating clicks on the Next button periodically.

 122

You can check out my photo albums at
scriptwell.net/myPhotos. They are not as nice (yet) as those
generated by Jalbum but definitely faster.
The next article, AJAX In Action (2): Fixing The Broken
Bookmark solves a common problem of partial change of
page contents. Then I'll show you how the slide show is
implemented and how the thumbnail view can be handled
without loading a new page. Another article is about
speeding up the Photo Album Application by proper
preload technique.
You can find the complete HTML, Javascript and CSS lists
of the Photo Album Application in the last article of this
series.

Abstract
This article shows how to start creating a complex photo
album site that requests minimal downloads from the
server. Instead of loading several pages, requested updates
take place on the client-side via dynamic changes of a
single page. At the end of the series the reader will have a
fully functional, cross-browser, fast and compact photo
album application that does not even need a web server.

Questions
1. The usual way to visit a site is to go to the opening page
or home page first. So, before the visitor clicks the Home
link somewhere in your site, the opening page has already
been visited. Does your web site reuses the previously
downloaded opening page in this case or does it request a
reload from the server?
2. Have you created or have you used a photo album
creator? Does it change the displayed photo by dynamic
change of the source of the IMG tag or by loading another
HTML page?

?

 123

It's the hash, baby!

 Fixing the Broken Bookmark

Intro
AJAX is a technique that enables us to create web pages
with changing segments. The need for such pages brought
up the concept of framesets in the early years of Internet.
One can easily change a segment of a page by changing the
content of one frame and leaving the others intact. A major
drawback of this technique is that the URL usually refers to
the default opening state of the frameset. When you are not
aware of browsing in a frameset, find something
interesting, bookmark it or send the URL to your friend,
you or your friend will not get back the same content what
you saw at the time of copying the URL. In an article, Got
Lost on the Web I gave a solution to that problem. The
main idea has been that a manipulated search string of the
URL can reflect the state of a page. (For sake of clarity,
search string is also called query string in the literature.)
The same exact technique does not work in our case.
Remember, we want to eliminate unnecessary round trips
to the server. One of the reasons of changing partial content
with AJAX is that we don't want to request a new page or
to reload the present page. However, changing the search
string invokes a page reload. This has not been a problem
with framesets because there we always wanted to change
the content by requesting and loading a new HTML in a
frame. So, what is the solution in case of single-document
pages? What part of the URL can we change without the
consequences of requesting a load? It's the hash!

 124

What Is Hash and How To Use It?
No, it's not what you think. This hash you cannot smoke.
Hash is the part of URL after a # hash mark. It's original
use is to navigate inside a page. The
 href="www.mypage.html#middle"

attribute links to the said page and scrolls to the section
starting with the anchor or with . (The latter is better: the name attribute has
already been deprecated in HTML 4 and future XHTML
versions will completely eliminate it.) The good news is
that one can set the hash property without invoking a load
or navigating inside the page. If there is no anchor named
"middle", the browser shows the top of the page.

With the above features of hash we can keep track of the
page's status. Every time we change the page content
dynamically, we can change the hash as well. In the Photo
Album application the actually displayed photo
corresponds to an album number and a picture number. The
snippet that writes these numbers in the hash is as follows:

 function SetPresentState(albumNo, picNo) {
 if (isNull(picNo)) picNo = 0;
 location.hash = albumNo + ";" + picNo;
}

The picNo = 0 state refers to the thumbnail view of an
album. SetPresentState should be called every time the

 125

content changes, i.e., when we set the image source and
when we switch to a thumbnail view. Then the URL
corresponds with the page state. When the page shows the
3d album's pictures in thumbnail view, the URL ends with
index.html#3;0 and when it shows the 4th picture of the 1st
album, it ends with index.html#1;4. We can bookmark or
send these URL's to a friend.

How To Retrieve The Page?
The remaining problem is that how we can reconstruct the
page from the above URL. By default it makes index.html
load and tries to find an anchor inside with the name or id
of "3;0" or "1;4". These anchors don't exist, so, the page
stays on its top. However, the following code in the HEAD
enables the page to appropriately set the content both in
thumbnail view and in single view:

 //Constants:
var ALBUMNO = 1;//default album number
var PICNO = 1;//default picture number
//Global vars:
var g_albumNo = GetPresentState(1);
var g_picNo = GetPresentState(2);
if (g_albumNo + g_picNo < 1) {//hash is empty
 g_albumNo = ALBUMNO;
 g_picNo = PICNO;
}

function GetPresentState(paramNo) {
 return Number(parseString(paramNo));
}

function parseString(n){//N>=n>0;
//Form of str: param1;param2;...;paramN
// Returns nth param of the string.
 var delim = ';'
 var str = getHash();//hash string w/o the '#'
 if (str.charAt(str.length-1)!=delim) str += delim;

 126

 var i = n;
 while(i>0) {
 retVal = str.substring(0,str.indexOf(delim));

str=str.substring(retVal.length+1,str.length);//cut
1st
 i--;
 }
 return retVal;
}//end function parseString

function getHash() {
 var str = document.location.hash;
 return str.substring(1,str.length);//cut the '#'
}//end function getHash()

parseString is a simplified version of a more general
function. The original one can handle various types of
strings with various delimiter characters and of various
origins. You can find the complete HTML, Javascript and
CSS lists of the Photo Album Application in the last article
of this part.

Summary
This article gives a solution to a common problem of
AJAX: when the content of a page changes without page
load, the URL does not necessarily reflect the state of the
page.

 127

When web developers become envy of
desktop developers, wonderful things happen!

Slide Show With Asynchronous Calls

Intro
In the early computer age programs executed procedures one
after the other. The asynchronous approach enables us to trigger
new procedures while old ones are still running. In many cases
we don't have to care about parallel runs of procedures because
the individual actions finish so quickly that the sequential
processing is not noticeable. However, we must arrange parallel
processing when a process takes long or when we want to time
and delay processes. In desktop applications it is obvious that
calculations continue, data streams flow, and clocks are ticking
while we do something else on the computer. Web developers
became envy of desktop developers, and when we get envy,
wonderful things happen!

Many web applications don't work with sequential
processing. In some cases the user experiences only
annoying effects, like temporary space holders instead of
pictures. In other cases the web application crashes because
it expects downloaded elements which are not there yet.
For the latter I will show an example in one of the next
articles, where I discuss the handling of XML data that
carry the names and descriptions of the pictures.

 128

Buttons Of The Photo Album Application
Here is a screen shot of BTDT:

Four buttons are visible: the thumbnail view, the previous,
the next, and the slide show buttons. The buttons are
INPUT tags:
<input type="button" title="Thumbnail View"
id="btThumb"
 onclick="thumbNails(GetPresentState(1))" />
<input type="button" title="Previous" id="btPrev"
 onclick="Prev()" />
<input type="button" title="Next" id="btNext"
 onclick="Next();" />
<input type="button" title="Start Slide Show"
id="btPlaySlide"
 onclick="SlideShow()" />

 129

The title attribute provides a nice effect. Its value pops up
when the mouse goes over the button. In this article we
discuss two functions that are called by clicking on the
previous and on the next buttons:
function Prev() {
 if (g_Play) SlideShow(STOP);
 var albumNo = GetPresentState(1);
 var picNo = GetPresentState(2);
 if (picNo==0){ //thumbnail view of next album
 albumNo--;
 thumbNails(albumNo)
 }
 else {
 picNo--;
 setImage(albumNo,picNo);
 }
}//end function Prev

function Next(timeLeft) {//Called with arg
programmatically
 if (isNull(timeLeft)) SlideShow(STOP)
 else timeLeft--;
 if (timeLeft < 0) { //set next image immediately
 var albumNo = GetPresentState(1);
 var picNo = GetPresentState(2);
 if (picNo==0){ //thumbnail view of next album
 albumNo++;
 thumbNails(albumNo)
 }
 else {//next single slide
 picNo++;
 if (picNo>=arrMenus[albumNo].length) picNo=1;
 setImage(albumNo,picNo);
 timeLeft = g_delayTime;
 if (g_Play) Next(timeLeft);
 }
 }
 else {//after 1 sec(=10000 msec) call Next again
 tout = setTimeout('Next(timeLeft--)', 1000);
 }
}//end function Next

The first line of Prev() (and of Next()) is obvious. It
stops the slide show. The second and third lines read the
state variables, discussed in the previous article. The

 130

following branching shows the dual task of the previous
button: When we are in thumbnail view, the click brings up
the thumbnail view of the previous album. When we are in
single picture view, the click calls the previous picture of
the same album.
Function Next could have been similar to function Prev
with the minor difference that albumNo++ and picNo++
increment operations would replace the albumNo-- and
picNo-- decrement operations. Next() without a
parameter basically does the same as Prev(), in opposit
direction. However, the slide show is implemented the way
that function Next is called with a timeLeft parameter
and with a global Boolean variable g_Play that is set to
true. It recursively calls itself until the user hits a button.

How The Slide Show Works
The key statement of the slide show is the last line of
function Next. The function setTimeout() is one of the
most important functions in asynchronous Javascript
programming. Its first parameter tells which function
should be called later, and the second parameter gives the
definition of 'later' in milliseconds. In our example Next
calls itself recursively, with decrementing parameter. When
the parameter becomes negative, Next behaves as if it was
called by a regular click. If nothing happens in the
meantime, g_Play stays true. Right after setting the new
image, it also resets the waiting time, and the process starts
again.

Summary
This article describes the evolution of the Photo Album
Application's Next button. The slide show has been
implemented as an imitation of periodic clicks on the Next
button.

 131

Hope for the best but expect the worst from the users

Preloading Images

Intro
The idea of preloading images is almost as old as the
Internet. Yet, many misconceptions are circulating in the
web developers' community. The basic problem is that
downloading large files, mostly pictures and other
multimedia files, may last longer than your visitor's
patience. For movie or music files continuous streaming is
the solution, when, instead of downloading the complete
file before playing it, loading and playing occur
simultaneously. In a previous article I discussed some
possible solutions to play sound on the web. Here we only
concentrate on how to display image files fast.
The concept of preloading is based on the idea that large or
repeatedly used files should be downloaded in advance,
held in memory or at least on the client's hard drive. This
way the delay of displaying them would not be noticeable.
A typical application of this idea is the switching of images
upon the onmouseover and onmouseout events. The
switch must be prompt. If the images are relatively small,
default browser settings may automatically handle the local
storage of the pictures properly. In the BTDT application
the picture of a closed folder is supposed to change,
i.e., open when the user moves the cursor over it and
close again when the cursor leaves the picture.

 132

Possible Solutions
The changing image is accomplished with the following
snippet:
<img alt="folder" src="images/folder_closed.gif"
 onmouseover='this.src="images/folder_open.gif"'
 onmouseout ='this.src="images/folder_closed.gif"'
/>

It should work fine without preload, with the default
settings of Internet Explorer or Firefox. If the pictures don't
alternate fast for you, you or somebody else may have
changed the browser's setting. You, as a developer, can
hope for the best but you should prepare your web
application for the worst. You cannot underestimate the
user's creativity in messing up default settings. If, for
example, the user sets IE's cache size to minimum and the
"Check for newer versions of stored pages" to "Every visit
to the page", not much playground is left for the web
developer. Lately I gave up handling extreme users. I
usually issue a warning message to those, who disable
Javascript or use ancient browser versions but I'm not
willing to make extra efforts to serve them the same way as
the rest of the word, which luckily makes up at least 90%
of the users. However, you should prepare your app for
handling normal situations, like preloading larger pictures
that would not be kept automatically in the client's hard
drive or memory.
Here is the preloading version of the previous example. The
following snippet should be placed in the HEAD section:
<script type="text/Javascript">
 imgArray = new Array();
 imgArray[0] = new Image();
 imgArray[1] = new Image();
 imgArray[0].src = "images/folder_closed.gif";
 imgArray[1].src = "images/folder_open.gif";
</script>

 133

Misconceptions
Because the code is invoked in the HEAD, the preloading
snippet is executed before the page load, right? Well,
almost. The execution starts but it may not finish before the
page load. It depends on the size of the preloaded files, on
the connection speed and on the type and configuration of
the browser. In case of two small pictures, like in the above
example, the preload occurs on time. This way the
"onmousover" and "onmousout" events will work smoothly
upon the image in the BODY:
 <img alt="folder" src="images/folder_closed.gif"
 onmouseover='this.src=imgArray[1].src'
 onmouseout='this.src=imgArray[0].src' />

Is this solution always appropriate? Let's say we have 20
pictures, 25k each, in a photo album. That's half a
megabyte to load. Also, assume that preload works as
expected, i.e., it finishes before the page load starts. The
creator of the page can assume that the pictures are there
when needed. However, the visitor does not see anything
until the preload is complete. If we used the above
technique, the preload would take at least 10 seconds even
with a fast Internet connection. 10 seconds is a critical
waiting time for the visitors. Many of them will not watch
an empty window that long and they leave the page before
the preload is complete.
Most tutorials advise to preload all pictures before loading
the page. A more intelligent approach is to preload only
those pictures that should be seen first, and load the rest
later. This can be an asynchronous process. While the
visitor watches the present page, a timed process can
preload the files that are necessary for the next state of the
page. The next state can be the result of a scroll-down or of
a click on a button, and we should preload the forthcoming
picture(s) before these events but after the load of the page.
Our case with the photo album is simple, and we don't have
to take care of an additional timing of the preloading

 134

process. The preload will be triggered by a user
intervention or by another, automated asynchronous
process. The Next function that sets up the asynchronous
process is discussed in the previous article of this series.
The Been There Done That Photo Album preloads only one
picture at a time, namely, the one that would be displayed
after the most likely actions, the click on the Next button.
Since the slide show uses the same function to
automatically change the picture, this preloading technique
works during the slide show, as well. The preload function,
of course, is located in the HEAD, but its execution
happens whenever a new image is set:
 function preload(albumNo, picNo) {
 if (isNull(imageArray[albumNo][picNo])) {//not
preloaded yet
 imageArray[albumNo][picNo] = new Image();
 imageArray[albumNo][picNo].src = 'image file name
...';
 }
}

function setImage(albumNo,picNo){
//Displays the currently asked image
...
//Preloads the next image
 picNo++;
 if (picNo<numberOfPictures) preload(albumNo,
picNo);
}//end function setImage

The complete code is available from the BTDT web site.

Summary
In case of large downloadable files, the developer cannot
assume that the files will be at the client's computer when
needed. Preloading may make an application faster or
slower. Both premature preload and negligation of preload
can cause problems. The problem may require an
asynchronous approach by its nature. One should not rely

 135

on default settings and features and must take care of the
sequence of processes. The demonstrated solution is a good
example of situations where we can trigger a process
synchronously, i.e., sequentially after an asynchronous
process.

 136

Web marketers and drug dealers have similar methods,
only that of the latter are always illegal.

Of Web Marketing and Other Cyber
Terrorism

Intro
It is all about security holes, businesses and crooks that
hide and exploit these holes; malicious and benign scripts;
the thin line between the criminal and the legal but
immoral activities.

Fine print
Some findings of this study have not been published,
due to their sensitive nature and their possible
volatile use. If you are not a terrorist or a
marketer, you may contact the author via email below
for technical details.
If I hurt your political sensitivity, you may also
write me and initiate an open discussion in a polite
manner, or keep your opinion, suck it up and deal
with it. If you are a Web marketer, and don't like
what I wrote about the nature of your business, I'm
still willing to discuss issues with you, assuming
benevolence. However, don't try to abuse my Web site
or my email address, don't send solicitations, junk
mail, spam, hate mail, etc. The consequences of your
malice will be serious and stronger than what you can
expect:
I'll use my rights of free speech against yours. You
may legally take away my resources, my storage space,
my bandwidth, my time. I will morally make your
business impossible with the power of bad publicity.
Don't pick a fight with me. You better keep your junk
to yourself.

 137

Zero Degree Crime: Marketing
The goal of marketing is to emphasize the attractive
features and hide the repelling ones of a business. White
lies are common in marketing, frequently outside the
ethical boundaries but mostly in the frame of legality. Most
people know that marketing is about illusions as opposed to
truth, misinterpretation as opposed to honest knowledge
sharing, and about sliding facts. Yet few say when they talk
about business as usual: "Show me a liar and I'll show you
a thief". Why? Because lying in marketing is legally and
publicly accepted; it creates jobs and it improves the
economy. Stealing, on the other hand, is a criminal activity.
If the first saying was true, then another one was an
obvious consequence: "Show me a successful business and
I'll show you a liar and a thief." Morally, a marketer is a
thief when he takes away business from a better product or
service, with the means and power of advertisement.
When Microsoft sells its Student version of Windows XP
and of Office, it uses the same strategy as drug dealers. The
price is extremely low, as well as the version's capability,
but the marketing buzzwords fly high: The name of the
campaign is "Unlimited Potential". By the time the students
realize their very limited potentials, they already became
Windows-dependant. They will not begin studying Linux, a
free and highly capable operating system. When the
addicted ex-students graduate, they will buy and have their
employers buy the pricier "hard stuff", the full-blown
operating system and Office suite, naturally from
Microsoft.

No Crime: Using Cookies and Scripts
Cookies and Javascript are important tools for keeping
track of online sessions. Let's say, you fill out an order that
spans through two pages. Once you entered your name in

 138

the first page, it's very convenient that the second page
automatically fills out the field of credit card holder's name
with your name, as a default. A Web site is capable to do
so, without taking the information, sending it from your
computer to the server, storing it into a database that keeps
track of your session, and sending back your name along
with the second page. Another application of client-side
scripting is to formally check the data entry. You can enter
your phone number with or without dashes, your name
capitalized or not. The Javascript will take care of the right
format. You may enter a six-digit phone number, a
Javascript can show your mistake immediately, doing the
format check on your computer, without sending the
incorrect phone number to a roundtrip. Using cookies and
Javascript helps the programmer keep the info and the
process in your computer, rather than exposing it. Of
course, there may be a point when the info must travel, but
it has nothing to do with the described use of cookies and
scripts.

Still No Crime: Cookies, Scripts and Spies
The content of this section has been removed due to its
sensitive nature and its possible volatile use.

First Degree Crime: Reading Others' Cookies
The content of this section has been removed due to its
sensitive nature and its possible volatile use.

Suggested Counter-Technology
The content of this section has been removed due to its
sensitive nature and its possible volatile use.

Suggested Legislature

We have rights to free speech, which, unfortunately protect
the liars and those who spread the bullshit, too... But what

 139

about thieves in the above sense? That a liar steals business
from the competition? Shouldn't we bring our legal values
closer to our moral and ethical values? If immoral lies
would be considered a crime as theft is, false
advertisements wouldn't gain so much ground in business.
This step would require a courageous legislature, turning
the questionable business behavior from free speech issue
to "crime against property" issue, facing possible slow-
down of the economy, etc. On the other hand, we could live
in an open, honest, more humane society.

 140

This page has been left intentionally blank.

 141

PART 4. APPENDICES

 The Web Developer's Ten
Commandments

Thou shalt make thy programme's structure clear to thy
fellow man

Thou shalt not mix content with presentation

Thou shalt not trust in default value settings

Thou shalt not annoy thy fellow man with blinking and

jerking images or texts

Thou shalt validate thy HTML

Thou shalt not leave loose ends in thy code

Thou shalt respect thy user with proper and necessary
messages

Thou shalt not use images excessively

Thou shalt not mix zero with null, lest grievous harm befall

thy code

Thou shalt always keep it simple

 142

Useful Links

That's us, Scriptwell.net, the home of good scripts. No
hassle, no ads, no pop-ups, no dancing logos. Almost like a
visit in a public library. Have your own armchair, and we
supply the free reading material.
World Wide Web Consortium Markup Validation Service
(validator.w3.org), where you can check the validity of
your pages before or after you publish them.
Dynamic Drive DHTML code library
(http://www.dynamicdrive.com/). Free, original DHTML
scripts and components, all of which utilize the latest in
DHTML and Javascript technology.
Jeffrey Zeldman's Web site (http://www.zeldman.com/).
Free downloads of chapters from a must-have book. The
writer is a real Web guru, not one of the many self-
proclaimed ones; a funny but worrying warrior of browser
compliance to standards.
WebReference.com (http://www.webreference.com/)

 143

References

Brian W. Kernighan, Rob Pike: The Practice of
Programming. ADDISON-WESLEY 1999, ISBN 0-201-
61586-X
Jeffrey Zeldman: Designing with Web Standards. New
Riders 2003, ISBN: 0-7357-1201-8
Dan Shafer: HTML Utopia: Designing Without Tables
Using CSS. SitePoint 2004, ISBN: 0-9579218-2-9
Andy B. King: Speed Up Your Site: Web Site Optimization
New Riders Publishing, 2003, ISBN: 0735713243.

 144

Acronyms and Abbreviations

AJAX – Asynchronous Javascript and XML
CSS – Cascading Style Sheet(s)
DHTML – Dynamic HTML
DRA – Development of Rapid Applications
FF – FireFox
HTML – Hypertext Meta Language
IDE – Integrated Development Environment
IE – Internet Explorer
IT – Information Technology
NS - Netscape
RAD – Rapid Application Development
WYSIWYG – What You See Is What You Get
XHTML – Extensible Hypertext Meta Language
XML - Extensible Meta Language

